dc.creatorMilian Pila C.R.
dc.creatorOtero T.M.
dc.creatorPerez Cappe E.
dc.creatorAlves O.L.
dc.creatorAranda P.
dc.creatorFrutis M.A.
dc.creatorLaffita Y.M.
dc.date2014
dc.date2015-06-25T18:03:05Z
dc.date2015-11-26T15:05:19Z
dc.date2015-06-25T18:03:05Z
dc.date2015-11-26T15:05:19Z
dc.date.accessioned2018-03-28T22:16:06Z
dc.date.available2018-03-28T22:16:06Z
dc.identifier
dc.identifierCeramics International. , v. 40, n. 1 PART A, p. 249 - 256, 2014.
dc.identifier2728842
dc.identifier10.1016/j.ceramint.2013.05.131
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84887621696&partnerID=40&md5=a2474f25fa221431a070698f6344bb72
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87972
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87972
dc.identifier2-s2.0-84887621696
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1257052
dc.descriptionPreparation of nano-crystalline Li0.5La0.5TiO 3 perovskite material using citrate-nitrate redox reaction by the combustion technique is reported. The role of the ammonium nitrate concentration used to co-precipitate the Li0.5La0.5Ti-citrate precursor is revealed by ATD/TG, XRD, SEM-EDX and HRTEM techniques. Thermo-gravimetric analysis data show how the intensity of the exothermic peak associated with the citrate-nitrate redox reaction decreases until disappearance as the citrate/nitrate molar ratio increases. The XRD study indicates that a single-phase cubic Li0.5La0.5TiO3 phase is formed at 350 C when the citrate/nitrate ratio varies between 0.13 and 0.17. The formed Li0.5La0.5TiO3 powders show an average particle size of 15-20 nm. Electrochemical impedance spectroscopy technique reveals a relative high ionic conductivity inside the grain for the nanometric Li0.5La0.5TiO3 material, with values of around 10-4 S/cm at room temperature. © 2013 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
dc.description40
dc.description1 PART A
dc.description249
dc.description256
dc.descriptionArmand, M., Tarascon, J.M., Building better batteries (2008) Nature, 451
dc.descriptionScrosati, B., Garche, J., Lithium batteries: Status, prospects and future (2010) Journal of Power Sources, 195, pp. 2419-2430
dc.descriptionBruce, P.G., Scrosati, B., Tarascon, J.M., Nanomaterials for rechargeable lithium batteries (2008) Angewandte Chemie International Edition, 47, pp. 2930-2946
dc.descriptionMeethong, N., Huang, H.-Y.S., Carter, W.C., Chiang, Y.-M., Size-dependent lithium miscibility gap in nanoscale Li 1-xFePO4 (2007) Electrochemical and Solid-State Letters, 10, pp. 134-A138
dc.descriptionStramare, S., Thangadurai, V., Weppner, W., Lithium lanthanum titanates: A review (2003) Chemistry of Materials, 15, pp. 3974-3990
dc.descriptionFergus, J.W., Ceramic and polymeric solid electrolytes for lithium-ion batteries (2010) Journal of Power Sources, 195, pp. 4554-4569
dc.descriptionKitaoka, K., Kozuka, H., Hashimoto, T., Yoko, T., Preparation of La0.5Li0.5TiO3 perovskite thin films by the sol-gel method (1997) Journal of Materials Science, 32, pp. 2063-2070
dc.descriptionVijayakumar, M., Pham, Q.N., Bohnke, C., Lithium lanthanum titanate ceramic as sensitive material for pH sensor: Influence of synthesis methods and powder grains size (2005) Journal of the European Ceramic Society, 25, pp. 2973-2976
dc.descriptionPechini, M.P., (1967) Method of Preparing Lead and Alkaline Titanates and Niobiates and Coating Method Using the Same to Form A Capacitor, USA, p. 697
dc.descriptionVijayakumar, M., Inaguma, Y., Mashiko, W., Crosnier-López, M.-P., Bhonke, C., Synthesis of fine powders of Li3xLa2/3-xTiO 3 perovskite by a polymerizable precursor method (2004) Chemistry of Materials, 16, pp. 2719-2724
dc.descriptionPham, Q.N., Bohnke, C., Lopez, M.P.C., Bohnke, O., Synthesis and characterization of nanostructured fast ionic conductor Li0.30La0.56TiO3 (2006) Chemistry of Materials, 18, pp. 4385-4392
dc.descriptionBehera, S.K., Barpanda, P., Pratihar, S.K., Bhattacharyya, S., Synthesis of magnesium-aluminium spinel from autoignition of citrate-nitrate gel (2004) Materials Letters, 58, pp. 1451-1455
dc.descriptionWerde, G.V.K.V., Mondelaers, D., Rul, H.D., Bael, M.K.V., Mullens, J., Poucke, L.C.V., The aqueous solution-gel synthesis of perovskite Pb(Zr 1-xTix)O3 (PZT) (2007) Journal of Materials Science, 42, pp. 624-632
dc.descriptionPurohit, R.D., Saha, S., Tyagi, A.K., Nanocrystalline thoria powders via glycine-nitrate combustion (2001) Journal of Nuclear Materials, 288, pp. 7-10
dc.descriptionChakrabarti, N., Maiti, H.S., Chemical synthesis of PZT powder by auto-combustion of citrate-nitrate gel (1997) Materials Letters, 30, pp. 169-173
dc.descriptionMarinsek, M., Zupan, K., Maeek, J., Ni-YSZ cermet anodes prepared by citrate/nitrate combustion synthesis (2002) Journal of Power Sources, 106, pp. 178-188
dc.descriptionJain, S.R., Adiga, K.C., Verneker, V.R.P., A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures (1981) Combustion and Flame, 40, pp. 71-79
dc.descriptionZupan, K., Kolar, D., Marinsek, M., Influence of citrate-nitrate reaction mixture packing on ceramic powder properties (2000) Journal of Power Sources, 86, pp. 417-422
dc.descriptionFolly, P., Mädera, P., Propellant chemistry (2004) CHIMIA International Journal for Chemistry, 58, pp. 374-382
dc.descriptionSingh, K.A., Pathak, L.C., Roy, S.K., Effect of citric acid on the synthesis of nano-crystalline yttria stabilized zirconia powders by nitrate-citrate process (2007) Ceramics International, 33, pp. 1463-1468
dc.descriptionOtero, T., Mosqueda, Y., Miilian, C.R., Perez-Cappe, E., Li3xLa2/3-xTiO3 nanoparticles obtained from a low temperature synthesis route (2011) Journal of Nano Research, 14, pp. 107-113
dc.descriptionThéoret, A., Sandorfy, C., Infrared spectra and crystalline phase transitions of ammonium nitrate (1964) Canadian Journal of Chemistry, 42, pp. 57-62
dc.descriptionZhecheva, R.S.E., Gorova, M., Alcántara, R., Morales, J., Tirado, J.L., Lithium-cobalt citrate precursors in the preparation of intercalation electrode materials (1996) Chemistry of Materials, 8, pp. 1429-1440
dc.descriptionTodorovsky, D.S., Getsova, M.M., Wawer, I., Stefanov, P., Enchev, V., On the chemical nature of lanthanum-titanium citric complexes, precursors of La2Ti2O7 (2004) Materials Letters, 58, pp. 3559-3563
dc.descriptionDakanali, M., Kefalas, E.T., Raptopoulou, C.P., Terzis, A., Voyiatzis, G., Kyrikou, I., Mavromoustakos, T., Salifoglou, A., A new dinuclear Ti(IV)-peroxo-citrate complex from aqueous solutions. Synthetic, structural, and spectroscopic studies in relevance to aqueous titanium(IV)-peroxo-citrate speciation (2003) Inorganic Chemistry, 42, pp. 4632-4639
dc.descriptionMuhlebach, J., Muller, K., Schawarzenbach, G., The peroxo complexes of titanium (1970) Inorganic Chemistry, 9, pp. 2381-2390
dc.descriptionHardy, A., D'Haen, J., Bael, M.K.V., Mullens, J., An aqueous solution gel citratoperoxo Ti(IV) precursor: Synthesis, gelation, thermo oxidative decomposition and oxide crystallization (2007) Journal of Sol-Gel Science and Technology, 44, pp. 65-74
dc.descriptionKakihana, M., Kobayashi, M., Tomita, K., Petrykin, V., Application of water soluble titanium complexes as precursors for synthesis of titanium containing oxides via aqueous solution processes (2010) Bulletin of the Chemical Society of Japan, 83, pp. 1285-1308
dc.descriptionMosqueda, Y., Cappe, E.P., Aranda, P., Ruiz-Hitzky, E., Preparation of an Li0.7Ni0.8Co0.2O 2 electrode material from a new Li-Co-Ni mixed-citrate precursor (2005) European Journal of Inorganic Chemistry, pp. 2698-2705
dc.descriptionBretos, I., Jiménez, R., Calzada, M.L., Bael, M.K.V., Hardy, A., Genechten, D.V., Mullens, J., Entirely aqueous solution-gel route for the preparation of (Pb 1-xCax)TiO3 thin films (2006) Chemistry of Materials, 18, pp. 6448-6456
dc.descriptionTodorovsky, D.S., Getsova, M.M., Vasileva, M.A., Thermal decomposition of lanthanum-titanium citric complexes prepared from ethylene glycol medium (2002) Journal of Materials Science, 37, pp. 4029-4039
dc.descriptionOxley, J.C., Smith, J.L., Rogers, E., Yu, M., Ammonium nitrate: Thermal stability and explosivity modifier (2002) Thermochimica Acta, 384, pp. 23-45
dc.descriptionOommen, C., Jain, S.R., Ammonium nitrate: A promising rocket propellant oxidizer (1999) Journal of Hazardous Materials, 67, pp. 253-281
dc.descriptionKorošec, R.C., Kajič, P., Bukovec, P., Determination of water, ammonium nitrate and sodium nitrate content in 'water-in-oil' emulsions using TG and DSC (2007) Journal of Thermal Analysis and Calorimetry, 89, pp. 619-624
dc.descriptionBanerjee, S., Kumar, A., Devi, P.S., Preparation of nanoparticles of oxides by the citrate-nitrate process. Effect of metal ions on the thermal decomposition characteristics (2011) Journal of Thermal Analysis and Calorimetry
dc.descriptionPatil, K.C., Hegde, M.S., Rattan, T., Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis (2008) Properties and Applications, , World Scientific Publishing Co. Pvt. Ltd. Singapore
dc.descriptionAkhavan, J., (2004) The Chemistry of Explosives, , R.S.o. Chemistry (Ed.)
dc.descriptionChen, C.H., Amine, K., Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate (2001) Solid State Ionics, 144, pp. 51-57
dc.descriptionBarsoukov, E., (2005) Impedance Spectroscopy: Theory, Experiment and Applications, , Evegenij Barsoukov, J. Ross Macdonald (Eds.) second edition, John Wiley & Sons, Inc., New Jersey
dc.descriptionChung, H.-T., Kim, J.-G., Kim, H.-G., Dependence of the lithium ionic conductivity on the B-site ion substitution in (Li0.5 La0.5)Ti1-xM xO3 (M=Sn, Zr, Mn, Ge) (1998) Solid State Ionics, 107, pp. 153-160
dc.languageen
dc.publisher
dc.relationCeramics International
dc.rightsfechado
dc.sourceScopus
dc.titleInfluence Of Citrate/nitrate Ratio On The Preparation Of Li 0.5la0.5tio3 Nanopowder By Combustion Method
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución