dc.creatorNotte-Cuello E.A.
dc.creatorRodrigues Jr. W.A.
dc.date2014
dc.date2015-06-25T18:02:45Z
dc.date2015-11-26T15:04:55Z
dc.date2015-06-25T18:02:45Z
dc.date2015-11-26T15:04:55Z
dc.date.accessioned2018-03-28T22:15:45Z
dc.date.available2018-03-28T22:15:45Z
dc.identifier
dc.identifierAdvances In Applied Clifford Algebras. , v. , n. , p. - , 2014.
dc.identifier1887009
dc.identifier10.1007/s00006-014-0482-0
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84905292733&partnerID=40&md5=13f07ee313f267badda813253828b78d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87896
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87896
dc.identifier2-s2.0-84905292733
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256961
dc.descriptionThis paper presents a thoughful review of: (a) the Clifford algebra (Formula presented.) of multivecfors which is naturally associated with a hyperbolic space HV ; (b) the study of the properties of the duality product of multivectors and multiforms; (c) the theory of k multivector and l multiform variables multivector extensors over V and (d) the use of the above mentioned structures to present a theory of the parallelism structure on an arbitrary smooth manifold introducing the concepts of covariant derivarives, deformed covariant derivatives and relative covariant derivatives of multivector, multiform fields and extensors fields. © 2014 Springer Basel.
dc.description
dc.description
dc.description
dc.description
dc.languageen
dc.publisher
dc.relationAdvances in Applied Clifford Algebras
dc.rightsfechado
dc.sourceScopus
dc.titleDifferential Structure Of The Hyperbolic Clifford Algebra
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución