dc.creator | Notte-Cuello E.A. | |
dc.creator | Rodrigues Jr. W.A. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:02:45Z | |
dc.date | 2015-11-26T15:04:55Z | |
dc.date | 2015-06-25T18:02:45Z | |
dc.date | 2015-11-26T15:04:55Z | |
dc.date.accessioned | 2018-03-28T22:15:45Z | |
dc.date.available | 2018-03-28T22:15:45Z | |
dc.identifier | | |
dc.identifier | Advances In Applied Clifford Algebras. , v. , n. , p. - , 2014. | |
dc.identifier | 1887009 | |
dc.identifier | 10.1007/s00006-014-0482-0 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84905292733&partnerID=40&md5=13f07ee313f267badda813253828b78d | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/87896 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/87896 | |
dc.identifier | 2-s2.0-84905292733 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1256961 | |
dc.description | This paper presents a thoughful review of: (a) the Clifford algebra (Formula presented.) of multivecfors which is naturally associated with a hyperbolic space HV ; (b) the study of the properties of the duality product of multivectors and multiforms; (c) the theory of k multivector and l multiform variables multivector extensors over V and (d) the use of the above mentioned structures to present a theory of the parallelism structure on an arbitrary smooth manifold introducing the concepts of covariant derivarives, deformed covariant derivatives and relative covariant derivatives of multivector, multiform fields and extensors fields. © 2014 Springer Basel. | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.description | | |
dc.language | en | |
dc.publisher | | |
dc.relation | Advances in Applied Clifford Algebras | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Differential Structure Of The Hyperbolic Clifford Algebra | |
dc.type | Artículos de revistas | |