dc.creatorRai M.
dc.creatorKon K.
dc.creatorIngle A.
dc.creatorDuran N.
dc.creatorGaldiero S.
dc.creatorGaldiero M.
dc.date2014
dc.date2015-06-25T18:02:43Z
dc.date2015-11-26T15:04:52Z
dc.date2015-06-25T18:02:43Z
dc.date2015-11-26T15:04:52Z
dc.date.accessioned2018-03-28T22:15:41Z
dc.date.available2018-03-28T22:15:41Z
dc.identifier
dc.identifierApplied Microbiology And Biotechnology. , v. 98, n. 5, p. 1951 - 1961, 2014.
dc.identifier1757598
dc.identifier10.1007/s00253-013-5473-x
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84896724681&partnerID=40&md5=9449529cf160a3d4d4f349d72bd5b4ac
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87890
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87890
dc.identifier2-s2.0-84896724681
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256949
dc.descriptionThere are alarming reports of growing microbial resistance to all classes of antimicrobial agents used against different infections. Also the existing classes of anticancer drugs used against different tumours warrant the urgent search for more effective alternative agents for treatment. Broad-spectrum bioactivities of silver nanoparticles indicate their potential to solve many microbial resistance problems up to a certain extent. The antibacterial, antifungal, antiviral, antiprotozoal, acaricidal, larvicidal, lousicidal and anticancer activities of silver nanoparticles have recently attracted the attention of scientists all over the world. The aim of the present review is to discuss broad-spectrum multifunctional activities of silver nanoparticles and stress their therapeutic potential as smart nanomedicine. Much emphasis has been dedicated to the antimicrobial and anticancer potential of silver nanoparticles showing their promising characteristics for treatment, prophylaxis and control of infections, as well as for diagnosis and treatment of different cancer types. © 2014 Springer-Verlag.
dc.description98
dc.description5
dc.description1951
dc.description1961
dc.descriptionAbebe, L., Silver impregnated ceramic water filters to treat Cryptosporidium parvum (2012) CGH Symposium, 1 October 2012, , http://prezi.com/fx_3-9w4ai0h/silver-nanoparticle-treated- cryptosporidium-parvum-response-in-mice/, Accessed 26 March 2013
dc.descriptionAbraham, I., El-Sayed, K., Chen, Z.S., Guo, H., Current status on marine products with reversal effect on cancer multidrug resistance (2012) Mar Drugs, 10, pp. 2312-2321
dc.descriptionAdhikari, U., Ghosh, A., Chandra, G., Nanoparticles of herbal origin: A recent eco-friend trend in mosquito control (2013) Asian Pac J Trop Dis, 3, pp. 167-168
dc.descriptionAllahverdiyev, A.M., Abamor, E.S., Bagirova, M., Rafailovich, M., Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites (2011) Future Microbiol, 6, pp. 933-940
dc.descriptionAllahverdiyev, A.M., Abamor, E.S., Bagirova, M., Ustundag, C.B., Kaya, C., Kaya, F., Rafailovich, M., Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light (2011) Int J Nanomedicine, 6, pp. 2705-2714
dc.descriptionAllahverdiyev, A.M., Kon, K.V., Abamor, E.S., Bagirova, M., Rafailovich, M., Coping with antibiotic resistance: Combination of nanoparticles with antibiotics and other antimicrobial agents (2011) Expert Rev Anti-Infect Ther, 9, pp. 1035-1052
dc.descriptionBanerjee, M., Mallick, S., Paul, A., Chattopadhyay, A., Ghosh, S.S., Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite (2010) Langmuir, 26, pp. 5901-5908
dc.descriptionBaram-Pinto, D., Shukla, S., Perkas, N., Gedanken, A., Sarid, R., Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate (2009) Bioconjug Chem, 20, pp. 1497-1502
dc.descriptionBawaskar, M., Gaikwad, S., Ingle, A., Rathod, D., Gade, A., Duran, N., Marcato, P.D., Rai, M., A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum (2010) Curr Nanosci, 6, pp. 376-380
dc.descriptionBhattacharyya, S.S., Das, J., Das, S., Samadder, A., Das, D., De, A., Paul, S., Khuda-Bukhsh, A.R., Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture phytolacca decandra (2012) Zhong Xi Yi Jie He Xue Bao, 10, pp. 546-554
dc.descriptionBirla, S.S., Tiwari, V.V., Gade, A.K., Ingle, A.P., Yadav, A.P., Rai, M.K., Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus (2009) Lett Appl Microbiol, 48, pp. 173-179
dc.descriptionBonde, S.R., Rathod, D.P., Ingle, A.P., Ade, R.B., Gade, A.K., Rai, M.K., Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria (2012) Nanosci Meth, 1, pp. 25-36
dc.descriptionConde, J., Doria, G., Baptista, P., Noble metal nanoparticles applications in cancer (2012) J Drug Deliv, pp. 1-12. , 751075
dc.descriptionDar, M.A., Ingle, A., Rai, M., Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics (2013) Nanomedicine NBM, 9, pp. 105-110
dc.descriptionDe-Gusseme, B., Sintubin, L., Baert, L., Thibo, E., Hennebel, T., Vermeulen, G., Uyttendaele, M., Boon, N., Biogenic silver for disinfection of water contaminated with viruses (2010) Appl Environ Microbiol, 76, pp. 1082-1087
dc.descriptionDe-Lima, R., Seabra, A.B., Durán, N., Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles (2012) J Appl Toxicol, 32, pp. 867-879
dc.descriptionDe-Lima, R., Feitosa, L.O., Ballottin, D., Marcato, P.D., Tasic, L., Durán, N., Cytotoxicity and genotoxicity of biogenic silver nanoparticles (2013) J Phys Conf Series, 429, p. 012020
dc.descriptionDevi, L.S., Joshi, S.R., Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya (2012) Mycobiol, 40, pp. 27-34
dc.descriptionDuran, N., Marcato, P.D., Nanobiotechnology perspectives: Role of nanotechnology in the food industry: A review (2013) Int J Food Sci Technol, 48, pp. 1127-1134
dc.descriptionDuran, N., Marcato, P.D., Teixeira, Z., Durán, M., Costa, F.T.M., Brocchi, M., State of the art of nanobiotechnology applications in neglected diseases (2009) Curr Nanosci, 5, pp. 396-408
dc.descriptionDuran, N., Marcato, P.D., De-Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) J Braz Chem Soc, 21, pp. 949-959
dc.descriptionDurand, R., Bouvresse, S., Berdjane, Z., Izri, A., Chosidow, O., Clark, J.M., Insecticide resistance in head lice: Clinical, parasitological and genetic aspects (2012) Clin Microbiol Infect, 18, pp. 338-344
dc.descriptionElechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H., Yacaman, M.J., Interaction of silver nanoparticles with HIV-1 (2005) J Nanobiotechnol, 3, p. 6
dc.descriptionElliott, C., The effects of silver dressings on chronic and burns wound healing (2010) Br J Nurs, 19, pp. S32-S36
dc.descriptionFall, B., Pascual, A., Sarr, F.D., Wurtz, N., Richard, V., Baret, E., Diémé, Y., Pradines, B., Plasmodium falciparum susceptibility to antimalarial drugs in Dakar, Senegal, in 2010: An ex vivo and drug resistance molecular markers study (2013) Malar J, 12, p. 107
dc.descriptionFayaz, A.M., Ao, Z., Girilal, M., Chen, L., Xiao, X., Kalaichelvan, P., Yao, X., Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection (2012) Int J Nanomedicine, 7, pp. 5007-5018
dc.descriptionGade, A., Gaikwad, S., Tiwari, V., Yadav, A., Ingle, A., Rai, M., Biofabrication of silver nanoparticles by Opuntia ficus-indica: In vitro antibacterial activity and study of the mechanism involved in the synthesis (2010) Curr Nanosci, 6, pp. 370-375
dc.descriptionGaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, M., Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3 (2013) Int J Nanomedicine, 3 (8), pp. 4303-4314
dc.descriptionGajbhiye, M.B., Kesharwani, J.G., Ingle, A.P., Gade, A.K., Rai, M.K., Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole (2009) Nanomedicine NBM, 5, pp. 282-286
dc.descriptionGaldiero, S., Falanga, A., Vitiello, M., Marra, M.C.V., Galdiero, M., Silver nanoparticles as potential antiviral agents molecules (2011) Molecules, 16, pp. 8894-8918
dc.descriptionGaldiero, S., Falanga, A., Cantisani, M., Ingle, A., Galdiero, M., Rai, M., Silver nanoparticles as novel antibacterial and antiviral agents (2014) Frontiers of Nanomedical Research, , Worlds Scientific Publishing 2014, in press
dc.descriptionHoward, C.R., Fletcher, N.F., Emerging virus diseases: Can we ever expect the unexpected? (2012) Emerg Microbes Infect, 1, pp. e46
dc.descriptionIngle, A., Gade, A., Pierrat, S., Sonnichsen, C., Rai, M., Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria (2008) Current Nanoscience, 4 (2), pp. 141-144. , http://www.ingentaconnect.com/content/ben/cnano/2008/00000004/00000002/ art00004, DOI 10.2174/157341308784340804
dc.descriptionIngle, A., Rai, M., Gade, G., Bawaskar, M., Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles (2009) J Nanopart Res, 11, pp. 2079-2085
dc.descriptionJacob, S.J.P., Finu, J.S., Narayanan, A., Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line (2012) Colloids Surf B: Biointerfaces, 91, pp. 212-214
dc.descriptionJaidev, L.R., Narasimha, G., Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity (2010) Colloids Surf B: Biointerfaces, 81, pp. 430-433
dc.descriptionJain, K.K., Advances in the field of nano-oncology (2010) BMC Med, 8, pp. 1-11
dc.descriptionJayaseelan, C., Rahuman, A.A., Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae) (2012) Parasitol Res, 111, pp. 1369-1378
dc.descriptionJayaseelan, C., Rahuman, A.A., Rajakumar, G., Santhoshkumar, T., Kirthi, A.V., Marimuthu, S., Bagavan, A., Raveendran, S., Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites (2012) Parasitol Res, 111, pp. 921-933
dc.descriptionJeyaraj, M., Rajesh, M., Arun, R., MubarakAli, D., Sathishkumar, G., Sivanandhan, G., Dev, K.G., Ganapathi, A., An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells (2013) Colloids Surf B: Biointerfaces, 102, pp. 708-717
dc.descriptionJeyaraj, M., Sathishkumar, G., Sivanandhan, G., Mubarak-Ali, D., Rajesh, M., Arun, R., Apildev, G., Ganapathi, A., Biogenic silver nanoparticles for cancer treatment: An experimental report (2013) Colloids Surf B: Biointerfaces, 106, pp. 86-92
dc.descriptionJo, Y.K., Kim, B.H., Jung, G., Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi (2009) Plant Dis, 93, pp. 1037-1043
dc.descriptionJohnson, A.P., Methicillin resistant Staphylococcus aureus: The European landscape (2011) J Antimicrob Chemother, 66, pp. iv43-iv48
dc.descriptionJohnson, V.A., Calvez, V., Gunthard, H.F., Paredes, R., Pillay, D., Shafer, R.W., Wensing, A.M., Richman, D.D., Update of the drug resistance mutations in HIV-1: March 2013 (2013) Top Antivir Med, 21, pp. 6-14
dc.descriptionKamareddine, L., The biological control of the malaria vector (2012) Toxins, 4, pp. 748-767. , Basel
dc.descriptionKandile, N.G., Zaky, H.T., Mohamed, M.I., Mohamed, H.M., Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles (2010) Bull Kor Chem Soc, 31, pp. 3530-3538
dc.descriptionKaur, P., Thakur, R., Choudhary, A., An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens (2012) Int J Sci Technol Res, 1, pp. 83-86
dc.descriptionKilpatrick, A.M., Randolph, S.E., Drivers, dynamics, and control of emerging vector-borne zoonotic diseases (2012) Lancet, 380, pp. 1946-1955
dc.descriptionKim, K.J., Sung, W.S., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., Antifungal effect of silver nanoparticles on dermatophytes (2008) J Microbiol Biotechnol, 18, pp. 1482-1484
dc.descriptionKim, K.J., Sung, W.S., Suh, B.K., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., Antifungal activity and mode of action of silver nano-particles on Candida albicans (2009) Biometals, 22, pp. 235-242
dc.descriptionKorich, D.G., Mead, J.R., Madore, M.S., Sinclair, N.A., Sterling, C.R., Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability (1990) Applied and Environmental Microbiology, 56 (5), pp. 1423-1428
dc.descriptionLara, H.H., Ayala-Nunez, N.V., Ixtepan-Turrent, L., Rodriguez-Padilla, C., Mode of antiviral action of silver nanoparticles against HIV-1 (2010) J Nanobiotechnol, 8, p. 1
dc.descriptionLara, H.H., Ixtepan-Turrent, L., Garza-Treviño, E.N., Rodriguez-Padilla, C., PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture (2010) J Nanobiotechnol, 8, pp. 15-25
dc.descriptionLara, H.H., Ixtepan-Turrent, L., Garza-Treviño, E.N., Singh, D.K., Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins (2011) J Nanobiotechnol, 9, p. 38
dc.descriptionLiu, H.L., Dai, S.A., Fu, K.Y., Hsu, S.H., Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane (2010) Int J Nanomedicine, 5, pp. 1017-1028
dc.descriptionLu, L., Sun, R.W., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Lau, G.K., Che, C.M., Silver nanoparticles inhibit hepatitis B virus replication (2008) Antivir Ther, 13, pp. 253-262
dc.descriptionMarr, A.K., McGwire, B.S., McMaster, W.R., Modes of action of leishmanicidal antimicrobial peptides (2012) Future Microbiol, 7, pp. 1047-1059
dc.descriptionMarsich, E., Travan, A., Donati, I., Turco, G., Kulkova, J., Moritz, N., Aro, H.T., Paoletti, S., Biological responses of silver-coated thermosets: An in vitro and in vivo study (2013) Acta Biomater, 9, pp. 5088-5099
dc.descriptionMehrbod, P., Motamed, N., Tabatabaian, M., Soleimani, E.R., Amini, E., Shahidi, M., Kheiri, M.T., In vitro antiviral effect of "nanosilver" on influenza virus (2009) DARU, 17, pp. 88-93
dc.descriptionMisra, R., Acharya, S., Sahoo, S.K., Cancer nanotechnology: Application of nanotechnology in cancer therapy (2010) Drug Discov Today, 15, pp. 842-850
dc.descriptionMohebali, M., Rezayat, M.M., Gilani, K., Sarkar, S., Akhoundi, B., Esmaeili, J., Satvat, T., Hooshyar, H., Nanosilver in the treatment of localized cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): An in vitro and in vivo study (2009) DARU J Pharm Sci, 17, pp. 285-289
dc.descriptionMurray, H.W., Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages (1981) J Exp Med, 153, pp. 1302-1315
dc.descriptionMurugan, K., Shri, K.P., Barnard, D., (2013) Green Synthesis of Silver Nanoparticles from Botanical Sources and Their Use for Control of Medical Insects and Malaria Parasites, , http://www.ars.usda.gov/research/publications/publications.htm? seq_no_115=281989, Accessed 26 March 2013
dc.descriptionNarasimha, G., Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus niger (2012) J Nanosci Nanotechnol, 6 (1), pp. 18-20
dc.descriptionNasrollahi, A., Pourshamsian, K., Mansourkiaee, P., Antifungal activity of silver nanoparticles on some of fungi (2011) Int J Nanotechnol, 1, pp. 233-239
dc.descriptionNilforoushzadeh, M.A., Shirani-Bidabadi, L.A., Zolfaghari-Baghbaderani, A., Jafari, R., Heidari-Beni, M., Siadat, A., Ghahraman-Tabrizi, M., Topical effectiveness of different concentrations of nanosilver solution on Leishmania major lesions in balb/c mice (2012) J Vector Borne Dis, 49, pp. 249-253
dc.descriptionPal, S., Tak, Y.K., Song, J.M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli (2007) Applied and Environmental Microbiology, 73 (6), pp. 1712-1720. , DOI 10.1128/AEM.02218-06
dc.descriptionPanneerselvam, C., Ponarulselvam, S., Murugan, K., Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata nees (Acanthaceae) (2011) Archives of Applied Science Research, 3 (6), pp. 208-217
dc.descriptionPiao, M.J., Kang, K.A., Lee, I.K., Kim, H.S., Kim, S., Choi, Y.J., Choi, J., Hyun, J.W., Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis (2011) Toxicol Lett, 201, pp. 92-100
dc.descriptionPonarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., Thangamani, S., Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities (2012) Asian Pac J Trop Biomed, 2, pp. 574-580
dc.descriptionPrabhu, D., Arulvasu, C., Babu, G., Manikandan, R., Srinivasan, P., Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. Induce growth-inhibitory effect on human colon cancer cell line HCT15 (2013) Process Biochem, 48, pp. 317-324
dc.descriptionQiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y., Shao, P., Cancer therapy based on nanomaterials and nanocarrier systems (2010) J Nanomater, pp. 1-9. , 796303
dc.descriptionRaghavendra, K., Barik, T.K., Reddy, B.P., Sharma, P., Dash, A.P., Malaria vector control: From past to future (2011) Parasitol Res, 108, pp. 757-779
dc.descriptionRaheman, F., Deshmukh, S., Ingle, A., Gade, A., Rai, M., Silver nanoparticles: Novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L) (2011) Nano Biomed Eng, 3 (3), pp. 174-178
dc.descriptionRai, M., Ingle, A., Role of nanotechnology in agriculture with special reference to management of insect pests (2012) Appl Microbiol Biotechnol, 94, pp. 287-293
dc.descriptionRai, M.K., Yadav, A.P., Gade, A.K., Silver nanoparticles as a new generation of antimicrobials (2009) Biotechnol Adv, 27, pp. 76-82
dc.descriptionRai, M., Gade, A., Gaikwad, S., Marcato, P.D., Durán, N., Biomedical applications of nanobiosensors: The state-of-the-art (2012) J Braz Chem Soc, 23, pp. 14-24
dc.descriptionRigo, C., Ferroni, L., Tocco, I., Roman, M., Munivrana, I., Gardin, C., Cairns, W.R., Zavan, B., Active silver nanoparticles for wound healing (2013) Int J Mol Sci, 14, pp. 4817-4840
dc.descriptionRoger, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L., Hussain, S.M., A Preliminary assessment of silver nanoparticle inhibition of monkeypox virus plciue formation (2008) Nanoscale Res Lett, 3, pp. 129-133
dc.descriptionRossi-Bergmann, B., Pacienza-Lima, W., Marcato, P.D., De-Conti, R., Durán, N., Therapeutic potential of biogenic silver nanoparticles in murine cutaneous leishmaniasis (2012) J Nano Res, 20, pp. 89-97
dc.descriptionSaid, D.E., Elsamad, L.M., Gohar, Y.M., Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents (2012) Parasitol Res, 111, pp. 545-554
dc.descriptionSalem, A.N.B., Zyed, R., Lassoued, M.A., Nidhal, S., Sfar, S., Mahjoub, A., Plant-derived nanoparticles enhance antiviral activity against coxsakievirus B3 by acting on virus particles and vero cells (2012) Dig J Nanomater Biostruct, 7, pp. 737-744
dc.descriptionSalunkhe, R.B., Patil, S.V., Patil, C.D., Salunke, B.K., Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera
dc.descriptionCulicidae) (2011) Parasitol Res, 109, pp. 823-831
dc.descriptionSatyavani, K., Gurudeeban, S., Ramanathan, T., Balasubramanian, T., Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line (2012) Avicenna J Med Biotech, 4, pp. 35-39
dc.descriptionSavithramma, N., Rao, M.L., Rukmini, K., Suvarnalatha-Devi, P., Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants (2011) Int J Chem Technol Res, 3, pp. 1394-1402
dc.descriptionSeigneuric, R., Markey, L., Nuyten, D.S.A., Dubernet, C., Evelo, C.T.A., Finot, E., Garrido, C., From nanotechnology to nanomedicine: Applications to cancer research (2010) Curr Mol Med, 10, pp. 640-652
dc.descriptionShameli, K., Ahmad, M.B., Jazayeri, S.D., Shabanzadeh, P., Sangpour, P., Jahangirian, H., Gharayebi, Y., Investigation of antibacterial properties silver nanoparticles prepared via green method (2012) Chem Central J, 6, p. 73
dc.descriptionShio, M.T., Olivier, M., Editorial: Leishmania survival mechanisms: The role of host phosphatases (2010) J Leukoc Biol, 88, pp. 1-3
dc.descriptionSondi, I., Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria (2004) Journal of Colloid and Interface Science, 275 (1), pp. 177-182. , DOI 10.1016/j.jcis.2004.02.012, PII S0021979704001638
dc.descriptionSpeshock, J.L., Murdock, R.C., Braydich-Stolle, L.K., Schrand, A.M., Hussain, S.M., Interaction of silver nanoparticles with tacaribe virus (2010) J Nanobiotechnol, 8, p. 19
dc.descriptionSriram, M.I., Barath, S., Kanth, M., Kalishwaralal, K., Gurunathan, S., Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model (2010) Int J Nanomed, 5, pp. 753-762
dc.descriptionSu, Y.H., Varhue, W., Liao, K.T., Swami, N., Characterizing silver nanoparticle-induced modifications to the dielectric response of Cryptosporidia oocysts (2012) Annual Meeting of the American Electrophoresis Society (AES)
dc.descriptionSubarani, S., Sabhanayakam, S., Kamaraj, C., Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi liston and Culex quinquefasciatus Say (Diptera: Culicidae) (2013) Parasitol Res, 112, pp. 487-499
dc.descriptionSun, R.W.-Y., Chen, R., Chung, N.P.-Y., Ho, C.-M., Lin, C.-L.S., Che, C.-M., Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells (2005) Chemical Communications, (40), pp. 5059-5061. , DOI 10.1039/b510984a
dc.descriptionSun, L., Singh, A.K., Vig, K., Pillai, S.R., Singh, S.R., Silver nanoparticles inhibit replication of respiratory syncytial virus (2008) J Biomed Biotechnol, 4, pp. 149-158
dc.descriptionTile, V.A., Bholay, A.D., Biosynthesis of silver nanoparticles and its antifungal activities (2012) J Environ Res Develop, 7, pp. 338-345
dc.descriptionTrefry, J.C., Wooley, D.P., Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism (2013) J Biomed Nanotech, 9, pp. 1624-1635
dc.descriptionXiang, D.X., Chen, Q., Pang, L., Zheng, C.L., Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro (2011) J Virol Methods, 178, pp. 137-142
dc.descriptionXu, Y., Gao, C., Li, X., He, Y., Zhou, L., Pang, G., Sun, S., In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi (2013) J Ocul Pharmacol Ther, 29, pp. 270-274
dc.descriptionZhang, H., Smith, J.A., Oyanedel-Craver, V., The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers (2012) Water Res, 46, pp. 691-699
dc.descriptionZhang, K., Li, F., Imazato, S., Cheng, L., Liu, H., Arola, D.D., Bai, Y., Xu, H.H., Dual antibacterial agents of nano-silver and 12- methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries (2013) J Biomed Mater Res B Appl Biomater, 101, pp. 929-938
dc.languageen
dc.publisher
dc.relationApplied Microbiology and Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleBroad-spectrum Bioactivities Of Silver Nanoparticles: The Emerging Trends And Future Prospects
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución