dc.creator | Rai M. | |
dc.creator | Kon K. | |
dc.creator | Ingle A. | |
dc.creator | Duran N. | |
dc.creator | Galdiero S. | |
dc.creator | Galdiero M. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:02:43Z | |
dc.date | 2015-11-26T15:04:52Z | |
dc.date | 2015-06-25T18:02:43Z | |
dc.date | 2015-11-26T15:04:52Z | |
dc.date.accessioned | 2018-03-28T22:15:41Z | |
dc.date.available | 2018-03-28T22:15:41Z | |
dc.identifier | | |
dc.identifier | Applied Microbiology And Biotechnology. , v. 98, n. 5, p. 1951 - 1961, 2014. | |
dc.identifier | 1757598 | |
dc.identifier | 10.1007/s00253-013-5473-x | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84896724681&partnerID=40&md5=9449529cf160a3d4d4f349d72bd5b4ac | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/87890 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/87890 | |
dc.identifier | 2-s2.0-84896724681 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1256949 | |
dc.description | There are alarming reports of growing microbial resistance to all classes of antimicrobial agents used against different infections. Also the existing classes of anticancer drugs used against different tumours warrant the urgent search for more effective alternative agents for treatment. Broad-spectrum bioactivities of silver nanoparticles indicate their potential to solve many microbial resistance problems up to a certain extent. The antibacterial, antifungal, antiviral, antiprotozoal, acaricidal, larvicidal, lousicidal and anticancer activities of silver nanoparticles have recently attracted the attention of scientists all over the world. The aim of the present review is to discuss broad-spectrum multifunctional activities of silver nanoparticles and stress their therapeutic potential as smart nanomedicine. Much emphasis has been dedicated to the antimicrobial and anticancer potential of silver nanoparticles showing their promising characteristics for treatment, prophylaxis and control of infections, as well as for diagnosis and treatment of different cancer types. © 2014 Springer-Verlag. | |
dc.description | 98 | |
dc.description | 5 | |
dc.description | 1951 | |
dc.description | 1961 | |
dc.description | Abebe, L., Silver impregnated ceramic water filters to treat Cryptosporidium parvum (2012) CGH Symposium, 1 October 2012, , http://prezi.com/fx_3-9w4ai0h/silver-nanoparticle-treated- cryptosporidium-parvum-response-in-mice/, Accessed 26 March 2013 | |
dc.description | Abraham, I., El-Sayed, K., Chen, Z.S., Guo, H., Current status on marine products with reversal effect on cancer multidrug resistance (2012) Mar Drugs, 10, pp. 2312-2321 | |
dc.description | Adhikari, U., Ghosh, A., Chandra, G., Nanoparticles of herbal origin: A recent eco-friend trend in mosquito control (2013) Asian Pac J Trop Dis, 3, pp. 167-168 | |
dc.description | Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Rafailovich, M., Antimicrobial effects of TiO(2) and Ag(2)O nanoparticles against drug-resistant bacteria and leishmania parasites (2011) Future Microbiol, 6, pp. 933-940 | |
dc.description | Allahverdiyev, A.M., Abamor, E.S., Bagirova, M., Ustundag, C.B., Kaya, C., Kaya, F., Rafailovich, M., Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light (2011) Int J Nanomedicine, 6, pp. 2705-2714 | |
dc.description | Allahverdiyev, A.M., Kon, K.V., Abamor, E.S., Bagirova, M., Rafailovich, M., Coping with antibiotic resistance: Combination of nanoparticles with antibiotics and other antimicrobial agents (2011) Expert Rev Anti-Infect Ther, 9, pp. 1035-1052 | |
dc.description | Banerjee, M., Mallick, S., Paul, A., Chattopadhyay, A., Ghosh, S.S., Heightened reactive oxygen species generation in the antimicrobial activity of a three component iodinated chitosan-silver nanoparticle composite (2010) Langmuir, 26, pp. 5901-5908 | |
dc.description | Baram-Pinto, D., Shukla, S., Perkas, N., Gedanken, A., Sarid, R., Inhibition of herpes simplex virus type 1 infection by silver nanoparticles capped with mercaptoethane sulfonate (2009) Bioconjug Chem, 20, pp. 1497-1502 | |
dc.description | Bawaskar, M., Gaikwad, S., Ingle, A., Rathod, D., Gade, A., Duran, N., Marcato, P.D., Rai, M., A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum (2010) Curr Nanosci, 6, pp. 376-380 | |
dc.description | Bhattacharyya, S.S., Das, J., Das, S., Samadder, A., Das, D., De, A., Paul, S., Khuda-Bukhsh, A.R., Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture phytolacca decandra (2012) Zhong Xi Yi Jie He Xue Bao, 10, pp. 546-554 | |
dc.description | Birla, S.S., Tiwari, V.V., Gade, A.K., Ingle, A.P., Yadav, A.P., Rai, M.K., Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus (2009) Lett Appl Microbiol, 48, pp. 173-179 | |
dc.description | Bonde, S.R., Rathod, D.P., Ingle, A.P., Ade, R.B., Gade, A.K., Rai, M.K., Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria (2012) Nanosci Meth, 1, pp. 25-36 | |
dc.description | Conde, J., Doria, G., Baptista, P., Noble metal nanoparticles applications in cancer (2012) J Drug Deliv, pp. 1-12. , 751075 | |
dc.description | Dar, M.A., Ingle, A., Rai, M., Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics (2013) Nanomedicine NBM, 9, pp. 105-110 | |
dc.description | De-Gusseme, B., Sintubin, L., Baert, L., Thibo, E., Hennebel, T., Vermeulen, G., Uyttendaele, M., Boon, N., Biogenic silver for disinfection of water contaminated with viruses (2010) Appl Environ Microbiol, 76, pp. 1082-1087 | |
dc.description | De-Lima, R., Seabra, A.B., Durán, N., Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles (2012) J Appl Toxicol, 32, pp. 867-879 | |
dc.description | De-Lima, R., Feitosa, L.O., Ballottin, D., Marcato, P.D., Tasic, L., Durán, N., Cytotoxicity and genotoxicity of biogenic silver nanoparticles (2013) J Phys Conf Series, 429, p. 012020 | |
dc.description | Devi, L.S., Joshi, S.R., Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of Eastern Himalaya (2012) Mycobiol, 40, pp. 27-34 | |
dc.description | Duran, N., Marcato, P.D., Nanobiotechnology perspectives: Role of nanotechnology in the food industry: A review (2013) Int J Food Sci Technol, 48, pp. 1127-1134 | |
dc.description | Duran, N., Marcato, P.D., Teixeira, Z., Durán, M., Costa, F.T.M., Brocchi, M., State of the art of nanobiotechnology applications in neglected diseases (2009) Curr Nanosci, 5, pp. 396-408 | |
dc.description | Duran, N., Marcato, P.D., De-Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity and possible mechanisms of action (2010) J Braz Chem Soc, 21, pp. 949-959 | |
dc.description | Durand, R., Bouvresse, S., Berdjane, Z., Izri, A., Chosidow, O., Clark, J.M., Insecticide resistance in head lice: Clinical, parasitological and genetic aspects (2012) Clin Microbiol Infect, 18, pp. 338-344 | |
dc.description | Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H., Yacaman, M.J., Interaction of silver nanoparticles with HIV-1 (2005) J Nanobiotechnol, 3, p. 6 | |
dc.description | Elliott, C., The effects of silver dressings on chronic and burns wound healing (2010) Br J Nurs, 19, pp. S32-S36 | |
dc.description | Fall, B., Pascual, A., Sarr, F.D., Wurtz, N., Richard, V., Baret, E., Diémé, Y., Pradines, B., Plasmodium falciparum susceptibility to antimalarial drugs in Dakar, Senegal, in 2010: An ex vivo and drug resistance molecular markers study (2013) Malar J, 12, p. 107 | |
dc.description | Fayaz, A.M., Ao, Z., Girilal, M., Chen, L., Xiao, X., Kalaichelvan, P., Yao, X., Inactivation of microbial infectiousness by silver nanoparticles-coated condom: A new approach to inhibit HIV- and HSV-transmitted infection (2012) Int J Nanomedicine, 7, pp. 5007-5018 | |
dc.description | Gade, A., Gaikwad, S., Tiwari, V., Yadav, A., Ingle, A., Rai, M., Biofabrication of silver nanoparticles by Opuntia ficus-indica: In vitro antibacterial activity and study of the mechanism involved in the synthesis (2010) Curr Nanosci, 6, pp. 370-375 | |
dc.description | Gaikwad, S., Ingle, A., Gade, A., Rai, M., Falanga, A., Incoronato, N., Russo, L., Galdiero, M., Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3 (2013) Int J Nanomedicine, 3 (8), pp. 4303-4314 | |
dc.description | Gajbhiye, M.B., Kesharwani, J.G., Ingle, A.P., Gade, A.K., Rai, M.K., Fungus mediated synthesis of silver nanoparticles and its activity against pathogenic fungi in combination of fluconazole (2009) Nanomedicine NBM, 5, pp. 282-286 | |
dc.description | Galdiero, S., Falanga, A., Vitiello, M., Marra, M.C.V., Galdiero, M., Silver nanoparticles as potential antiviral agents molecules (2011) Molecules, 16, pp. 8894-8918 | |
dc.description | Galdiero, S., Falanga, A., Cantisani, M., Ingle, A., Galdiero, M., Rai, M., Silver nanoparticles as novel antibacterial and antiviral agents (2014) Frontiers of Nanomedical Research, , Worlds Scientific Publishing 2014, in press | |
dc.description | Howard, C.R., Fletcher, N.F., Emerging virus diseases: Can we ever expect the unexpected? (2012) Emerg Microbes Infect, 1, pp. e46 | |
dc.description | Ingle, A., Gade, A., Pierrat, S., Sonnichsen, C., Rai, M., Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria (2008) Current Nanoscience, 4 (2), pp. 141-144. , http://www.ingentaconnect.com/content/ben/cnano/2008/00000004/00000002/ art00004, DOI 10.2174/157341308784340804 | |
dc.description | Ingle, A., Rai, M., Gade, G., Bawaskar, M., Fusarium solani: A novel biological agent for the extracellular synthesis of silver nanoparticles (2009) J Nanopart Res, 11, pp. 2079-2085 | |
dc.description | Jacob, S.J.P., Finu, J.S., Narayanan, A., Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line (2012) Colloids Surf B: Biointerfaces, 91, pp. 212-214 | |
dc.description | Jaidev, L.R., Narasimha, G., Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity (2010) Colloids Surf B: Biointerfaces, 81, pp. 430-433 | |
dc.description | Jain, K.K., Advances in the field of nano-oncology (2010) BMC Med, 8, pp. 1-11 | |
dc.description | Jayaseelan, C., Rahuman, A.A., Acaricidal efficacy of synthesized silver nanoparticles using aqueous leaf extract of Ocimum canum against Hyalomma anatolicum anatolicum and Hyalomma marginatum isaaci (Acari: Ixodidae) (2012) Parasitol Res, 111, pp. 1369-1378 | |
dc.description | Jayaseelan, C., Rahuman, A.A., Rajakumar, G., Santhoshkumar, T., Kirthi, A.V., Marimuthu, S., Bagavan, A., Raveendran, S., Efficacy of plant-mediated synthesized silver nanoparticles against hematophagous parasites (2012) Parasitol Res, 111, pp. 921-933 | |
dc.description | Jeyaraj, M., Rajesh, M., Arun, R., MubarakAli, D., Sathishkumar, G., Sivanandhan, G., Dev, K.G., Ganapathi, A., An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells (2013) Colloids Surf B: Biointerfaces, 102, pp. 708-717 | |
dc.description | Jeyaraj, M., Sathishkumar, G., Sivanandhan, G., Mubarak-Ali, D., Rajesh, M., Arun, R., Apildev, G., Ganapathi, A., Biogenic silver nanoparticles for cancer treatment: An experimental report (2013) Colloids Surf B: Biointerfaces, 106, pp. 86-92 | |
dc.description | Jo, Y.K., Kim, B.H., Jung, G., Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi (2009) Plant Dis, 93, pp. 1037-1043 | |
dc.description | Johnson, A.P., Methicillin resistant Staphylococcus aureus: The European landscape (2011) J Antimicrob Chemother, 66, pp. iv43-iv48 | |
dc.description | Johnson, V.A., Calvez, V., Gunthard, H.F., Paredes, R., Pillay, D., Shafer, R.W., Wensing, A.M., Richman, D.D., Update of the drug resistance mutations in HIV-1: March 2013 (2013) Top Antivir Med, 21, pp. 6-14 | |
dc.description | Kamareddine, L., The biological control of the malaria vector (2012) Toxins, 4, pp. 748-767. , Basel | |
dc.description | Kandile, N.G., Zaky, H.T., Mohamed, M.I., Mohamed, H.M., Silver nanoparticles effect on antimicrobial and antifungal activity of new heterocycles (2010) Bull Kor Chem Soc, 31, pp. 3530-3538 | |
dc.description | Kaur, P., Thakur, R., Choudhary, A., An in vitro study of the antifungal activity of silver/chitosan nanoformulations against important seed borne pathogens (2012) Int J Sci Technol Res, 1, pp. 83-86 | |
dc.description | Kilpatrick, A.M., Randolph, S.E., Drivers, dynamics, and control of emerging vector-borne zoonotic diseases (2012) Lancet, 380, pp. 1946-1955 | |
dc.description | Kim, K.J., Sung, W.S., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., Antifungal effect of silver nanoparticles on dermatophytes (2008) J Microbiol Biotechnol, 18, pp. 1482-1484 | |
dc.description | Kim, K.J., Sung, W.S., Suh, B.K., Moon, S.K., Choi, J.S., Kim, J.G., Lee, D.G., Antifungal activity and mode of action of silver nano-particles on Candida albicans (2009) Biometals, 22, pp. 235-242 | |
dc.description | Korich, D.G., Mead, J.R., Madore, M.S., Sinclair, N.A., Sterling, C.R., Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability (1990) Applied and Environmental Microbiology, 56 (5), pp. 1423-1428 | |
dc.description | Lara, H.H., Ayala-Nunez, N.V., Ixtepan-Turrent, L., Rodriguez-Padilla, C., Mode of antiviral action of silver nanoparticles against HIV-1 (2010) J Nanobiotechnol, 8, p. 1 | |
dc.description | Lara, H.H., Ixtepan-Turrent, L., Garza-Treviño, E.N., Rodriguez-Padilla, C., PVP-coated silver nanoparticles block the transmission of cell-free and cell-associated HIV-1 in human cervical culture (2010) J Nanobiotechnol, 8, pp. 15-25 | |
dc.description | Lara, H.H., Ixtepan-Turrent, L., Garza-Treviño, E.N., Singh, D.K., Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins (2011) J Nanobiotechnol, 9, p. 38 | |
dc.description | Liu, H.L., Dai, S.A., Fu, K.Y., Hsu, S.H., Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane (2010) Int J Nanomedicine, 5, pp. 1017-1028 | |
dc.description | Lu, L., Sun, R.W., Chen, R., Hui, C.K., Ho, C.M., Luk, J.M., Lau, G.K., Che, C.M., Silver nanoparticles inhibit hepatitis B virus replication (2008) Antivir Ther, 13, pp. 253-262 | |
dc.description | Marr, A.K., McGwire, B.S., McMaster, W.R., Modes of action of leishmanicidal antimicrobial peptides (2012) Future Microbiol, 7, pp. 1047-1059 | |
dc.description | Marsich, E., Travan, A., Donati, I., Turco, G., Kulkova, J., Moritz, N., Aro, H.T., Paoletti, S., Biological responses of silver-coated thermosets: An in vitro and in vivo study (2013) Acta Biomater, 9, pp. 5088-5099 | |
dc.description | Mehrbod, P., Motamed, N., Tabatabaian, M., Soleimani, E.R., Amini, E., Shahidi, M., Kheiri, M.T., In vitro antiviral effect of "nanosilver" on influenza virus (2009) DARU, 17, pp. 88-93 | |
dc.description | Misra, R., Acharya, S., Sahoo, S.K., Cancer nanotechnology: Application of nanotechnology in cancer therapy (2010) Drug Discov Today, 15, pp. 842-850 | |
dc.description | Mohebali, M., Rezayat, M.M., Gilani, K., Sarkar, S., Akhoundi, B., Esmaeili, J., Satvat, T., Hooshyar, H., Nanosilver in the treatment of localized cutaneous leishmaniasis caused by Leishmania major (MRHO/IR/75/ER): An in vitro and in vivo study (2009) DARU J Pharm Sci, 17, pp. 285-289 | |
dc.description | Murray, H.W., Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages (1981) J Exp Med, 153, pp. 1302-1315 | |
dc.description | Murugan, K., Shri, K.P., Barnard, D., (2013) Green Synthesis of Silver Nanoparticles from Botanical Sources and Their Use for Control of Medical Insects and Malaria Parasites, , http://www.ars.usda.gov/research/publications/publications.htm? seq_no_115=281989, Accessed 26 March 2013 | |
dc.description | Narasimha, G., Antiviral activity of silver nanoparticles synthesized by fungal strain Aspergillus niger (2012) J Nanosci Nanotechnol, 6 (1), pp. 18-20 | |
dc.description | Nasrollahi, A., Pourshamsian, K., Mansourkiaee, P., Antifungal activity of silver nanoparticles on some of fungi (2011) Int J Nanotechnol, 1, pp. 233-239 | |
dc.description | Nilforoushzadeh, M.A., Shirani-Bidabadi, L.A., Zolfaghari-Baghbaderani, A., Jafari, R., Heidari-Beni, M., Siadat, A., Ghahraman-Tabrizi, M., Topical effectiveness of different concentrations of nanosilver solution on Leishmania major lesions in balb/c mice (2012) J Vector Borne Dis, 49, pp. 249-253 | |
dc.description | Pal, S., Tak, Y.K., Song, J.M., Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli (2007) Applied and Environmental Microbiology, 73 (6), pp. 1712-1720. , DOI 10.1128/AEM.02218-06 | |
dc.description | Panneerselvam, C., Ponarulselvam, S., Murugan, K., Potential antiplasmodial activity of synthesized silver nanoparticle using Andrographis paniculata nees (Acanthaceae) (2011) Archives of Applied Science Research, 3 (6), pp. 208-217 | |
dc.description | Piao, M.J., Kang, K.A., Lee, I.K., Kim, H.S., Kim, S., Choi, Y.J., Choi, J., Hyun, J.W., Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis (2011) Toxicol Lett, 201, pp. 92-100 | |
dc.description | Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., Thangamani, S., Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities (2012) Asian Pac J Trop Biomed, 2, pp. 574-580 | |
dc.description | Prabhu, D., Arulvasu, C., Babu, G., Manikandan, R., Srinivasan, P., Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. Induce growth-inhibitory effect on human colon cancer cell line HCT15 (2013) Process Biochem, 48, pp. 317-324 | |
dc.description | Qiao, W., Wang, B., Wang, Y., Yang, L., Zhang, Y., Shao, P., Cancer therapy based on nanomaterials and nanocarrier systems (2010) J Nanomater, pp. 1-9. , 796303 | |
dc.description | Raghavendra, K., Barik, T.K., Reddy, B.P., Sharma, P., Dash, A.P., Malaria vector control: From past to future (2011) Parasitol Res, 108, pp. 757-779 | |
dc.description | Raheman, F., Deshmukh, S., Ingle, A., Gade, A., Rai, M., Silver nanoparticles: Novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L) (2011) Nano Biomed Eng, 3 (3), pp. 174-178 | |
dc.description | Rai, M., Ingle, A., Role of nanotechnology in agriculture with special reference to management of insect pests (2012) Appl Microbiol Biotechnol, 94, pp. 287-293 | |
dc.description | Rai, M.K., Yadav, A.P., Gade, A.K., Silver nanoparticles as a new generation of antimicrobials (2009) Biotechnol Adv, 27, pp. 76-82 | |
dc.description | Rai, M., Gade, A., Gaikwad, S., Marcato, P.D., Durán, N., Biomedical applications of nanobiosensors: The state-of-the-art (2012) J Braz Chem Soc, 23, pp. 14-24 | |
dc.description | Rigo, C., Ferroni, L., Tocco, I., Roman, M., Munivrana, I., Gardin, C., Cairns, W.R., Zavan, B., Active silver nanoparticles for wound healing (2013) Int J Mol Sci, 14, pp. 4817-4840 | |
dc.description | Roger, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L., Hussain, S.M., A Preliminary assessment of silver nanoparticle inhibition of monkeypox virus plciue formation (2008) Nanoscale Res Lett, 3, pp. 129-133 | |
dc.description | Rossi-Bergmann, B., Pacienza-Lima, W., Marcato, P.D., De-Conti, R., Durán, N., Therapeutic potential of biogenic silver nanoparticles in murine cutaneous leishmaniasis (2012) J Nano Res, 20, pp. 89-97 | |
dc.description | Said, D.E., Elsamad, L.M., Gohar, Y.M., Validity of silver, chitosan, and curcumin nanoparticles as anti-Giardia agents (2012) Parasitol Res, 111, pp. 545-554 | |
dc.description | Salem, A.N.B., Zyed, R., Lassoued, M.A., Nidhal, S., Sfar, S., Mahjoub, A., Plant-derived nanoparticles enhance antiviral activity against coxsakievirus B3 by acting on virus particles and vero cells (2012) Dig J Nanomater Biostruct, 7, pp. 737-744 | |
dc.description | Salunkhe, R.B., Patil, S.V., Patil, C.D., Salunke, B.K., Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera | |
dc.description | Culicidae) (2011) Parasitol Res, 109, pp. 823-831 | |
dc.description | Satyavani, K., Gurudeeban, S., Ramanathan, T., Balasubramanian, T., Toxicity study of silver nanoparticles synthesized from Suaeda monoica on Hep-2 cell line (2012) Avicenna J Med Biotech, 4, pp. 35-39 | |
dc.description | Savithramma, N., Rao, M.L., Rukmini, K., Suvarnalatha-Devi, P., Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants (2011) Int J Chem Technol Res, 3, pp. 1394-1402 | |
dc.description | Seigneuric, R., Markey, L., Nuyten, D.S.A., Dubernet, C., Evelo, C.T.A., Finot, E., Garrido, C., From nanotechnology to nanomedicine: Applications to cancer research (2010) Curr Mol Med, 10, pp. 640-652 | |
dc.description | Shameli, K., Ahmad, M.B., Jazayeri, S.D., Shabanzadeh, P., Sangpour, P., Jahangirian, H., Gharayebi, Y., Investigation of antibacterial properties silver nanoparticles prepared via green method (2012) Chem Central J, 6, p. 73 | |
dc.description | Shio, M.T., Olivier, M., Editorial: Leishmania survival mechanisms: The role of host phosphatases (2010) J Leukoc Biol, 88, pp. 1-3 | |
dc.description | Sondi, I., Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria (2004) Journal of Colloid and Interface Science, 275 (1), pp. 177-182. , DOI 10.1016/j.jcis.2004.02.012, PII S0021979704001638 | |
dc.description | Speshock, J.L., Murdock, R.C., Braydich-Stolle, L.K., Schrand, A.M., Hussain, S.M., Interaction of silver nanoparticles with tacaribe virus (2010) J Nanobiotechnol, 8, p. 19 | |
dc.description | Sriram, M.I., Barath, S., Kanth, M., Kalishwaralal, K., Gurunathan, S., Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model (2010) Int J Nanomed, 5, pp. 753-762 | |
dc.description | Su, Y.H., Varhue, W., Liao, K.T., Swami, N., Characterizing silver nanoparticle-induced modifications to the dielectric response of Cryptosporidia oocysts (2012) Annual Meeting of the American Electrophoresis Society (AES) | |
dc.description | Subarani, S., Sabhanayakam, S., Kamaraj, C., Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi liston and Culex quinquefasciatus Say (Diptera: Culicidae) (2013) Parasitol Res, 112, pp. 487-499 | |
dc.description | Sun, R.W.-Y., Chen, R., Chung, N.P.-Y., Ho, C.-M., Lin, C.-L.S., Che, C.-M., Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells (2005) Chemical Communications, (40), pp. 5059-5061. , DOI 10.1039/b510984a | |
dc.description | Sun, L., Singh, A.K., Vig, K., Pillai, S.R., Singh, S.R., Silver nanoparticles inhibit replication of respiratory syncytial virus (2008) J Biomed Biotechnol, 4, pp. 149-158 | |
dc.description | Tile, V.A., Bholay, A.D., Biosynthesis of silver nanoparticles and its antifungal activities (2012) J Environ Res Develop, 7, pp. 338-345 | |
dc.description | Trefry, J.C., Wooley, D.P., Silver nanoparticles inhibit vaccinia virus infection by preventing viral entry through a macropinocytosis-dependent mechanism (2013) J Biomed Nanotech, 9, pp. 1624-1635 | |
dc.description | Xiang, D.X., Chen, Q., Pang, L., Zheng, C.L., Inhibitory effects of silver nanoparticles on H1N1 influenza a virus in vitro (2011) J Virol Methods, 178, pp. 137-142 | |
dc.description | Xu, Y., Gao, C., Li, X., He, Y., Zhou, L., Pang, G., Sun, S., In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi (2013) J Ocul Pharmacol Ther, 29, pp. 270-274 | |
dc.description | Zhang, H., Smith, J.A., Oyanedel-Craver, V., The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers (2012) Water Res, 46, pp. 691-699 | |
dc.description | Zhang, K., Li, F., Imazato, S., Cheng, L., Liu, H., Arola, D.D., Bai, Y., Xu, H.H., Dual antibacterial agents of nano-silver and 12- methacryloyloxydodecylpyridinium bromide in dental adhesive to inhibit caries (2013) J Biomed Mater Res B Appl Biomater, 101, pp. 929-938 | |
dc.language | en | |
dc.publisher | | |
dc.relation | Applied Microbiology and Biotechnology | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Broad-spectrum Bioactivities Of Silver Nanoparticles: The Emerging Trends And Future Prospects | |
dc.type | Artículos de revistas | |