dc.creatorIngle A.P.
dc.creatorDuran N.
dc.creatorRai M.
dc.date2014
dc.date2015-06-25T18:02:43Z
dc.date2015-11-26T15:04:51Z
dc.date2015-06-25T18:02:43Z
dc.date2015-11-26T15:04:51Z
dc.date.accessioned2018-03-28T22:15:41Z
dc.date.available2018-03-28T22:15:41Z
dc.identifier
dc.identifierApplied Microbiology And Biotechnology. Springer Verlag, v. 98, n. 3, p. 1001 - 1009, 2014.
dc.identifier1757598
dc.identifier10.1007/s00253-013-5422-8
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84898851247&partnerID=40&md5=4dd9876214e65064a7a9c3e4a2f6a105
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87889
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87889
dc.identifier2-s2.0-84898851247
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256948
dc.descriptionNanotechnology is an emerging branch of science, which has potential to solve many problems in different fields. The union of nanotechnology with other fields of sciences including physics, chemistry, and biology has brought the concept of synthesis of nanoparticles from their respective metals. Till date, many types of nanoparticles have been synthesized and being used in different fields for various applications. Moreover, copper nanoparticles attract biologists because of their significant and broad-spectrum bioactivity. Due to the large surface area to volume ratio, copper nanoparticles have been used as potential antimicrobial agent in many biomedical applications. But the excess use of any metal nanoparticles increase the chance of toxicity to humans, other living beings, and environment. In this article, we have critically reviewed the bioactivities and cytotoxicity of copper nanoparticles. We have also focused on possible mechanism involved in its interaction with microbes. © 2013 Springer-Verlag Berlin Heidelberg.
dc.description98
dc.description3
dc.description1001
dc.description1009
dc.descriptionAnyaogu, K.C., Fedorov, A.V., Neckers, D.C., Synthesis, characterization, and antifouling potential of functionalized copper nanoparticles (2008) Langmuir, 24, pp. 4340-4346. , 18341370 10.1021/la800102f
dc.descriptionBeveridge, T.J., Murray, R.G.E., Sites of metal deposition in the cell wall of bacillus subtilis (1980) J Bacteriol, 141, pp. 876-877. , 293699 6767692
dc.descriptionBhattacharya, S., Alkharfy, K.M., Janardhanan, R., Mukhopadhyay, D., Nanomedicine: Pharmacological perspectives (2012) Nanotechnol Rev, 1, pp. 235-253. , 10.1515/ntrev-2011-0010
dc.descriptionBlosi, M., Albonetti, S., Dondi, M., Martelli, C., Baldi, G., Microwave-assisted polyol synthesis of Cu nanoparticles (2011) J Nanopart Res, 13, pp. 127-138. , 10.1007/s11051-010-0010-7 10.1007/s11051-010-0010-7
dc.descriptionBorkow, G., Gabbay, J., Copper: An ancient remedy returning to fight microbial, fungal and viral infections (2009) Curr Chem Biol, 3, pp. 272-278
dc.descriptionChandran, C.B., Subramanian, T.V., Felse, P.A., Chemometric optimization of parameters for biocatalytic reduction of copper ion by a crude enzyme lyzate of Saccharomyces cerevisiae grown under catabolic repression conditions (2001) Biochem Eng J, 8, pp. 31-37. , 10.1016/S1369-703X(00)00131-5
dc.descriptionChang, Y.N., Zhang, M., Xia, L., Zhang, J., Xing, G., The toxic effects and mechanisms of CuO and ZnO nanoparticles (2012) Materials, 5, pp. 2850-2871. , 10.3390/ma5122850
dc.descriptionChatterjee, A.K., Sarkar, R.K., Chattopadhyay, A.P., Aich, P., Chakraborty, R., Basu, T., A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against e (2012) Coli. Nanotechnology, 23, 11p. , 085103
dc.descriptionChattopadhyay, D.P., Patel, B.H., Effect of nanosized colloidal copper on cotton fabric (2010) J Eng Fibers Fabrics, 5, pp. 1-6
dc.descriptionChen, Z., Meng, H., Xing, G., Chen, C., Zhao, Y., Jia, G., Wang, T., Wan, L., Acute toxicological effects of copper nanoparticles in vivo (2006) Toxicol Lett, 163, pp. 109-120. , 16289865 10.1016/j.toxlet.2005.10.003
dc.descriptionCioffi, N., Torsi, L., Ditaranto, N., Tantillo, G., Ghibelli, L., Sabbatini, L., Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties (2005) Chem Mater, 17, pp. 5255-5262. , 10.1021/cm0505244
dc.descriptionCohen-Karni, T., Langer, R., Kohane, D.S., The smartest materials: The future of nanoelectronics in medicine (2012) ACS Nano, 6, pp. 6541-6545. , 22850578 10.1021/nn302915s
dc.descriptionDas, R., Gang, S., Nath, S.S., Bhattacharjee, R., Linoleic acid capped copper nanoparticles for antibacterial activity (2010) J Bionanosci, 4, pp. 82-86. , 10.1166/jbns.2010.1035
dc.descriptionDuncan, T.V., Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials, and sensors (2011) J Colloid Interface Sci, 363, pp. 1-24. , 21824625 10.1016/j.jcis.2011.07.017
dc.descriptionDuran, N., Marcato, P.D., De Conti, R., Alves, O.L., Costa, F.T.M., Brocchi, M., Potential use of silver nanoparticles on pathogenic bacteria, their toxicity, and possible mechanisms of action (2010) Braz Chem Soc, 21, pp. 949-959. , 10.1590/S0103-50532010000600002
dc.descriptionEsteban-Cubillo, A., Pecharroman, C., Aguilar, E., Santaren, J., Moya, J., Antibacterial activity of copper monodispersed nanoparticles into sepiolite (2006) J Mater Sci, 41, pp. 5208-5212. , 10.1007/s10853-006-0432-x
dc.descriptionEsteban-Tejeda, L., Malpartida, F., Esteban-Cubillo, A., Pecharroman, C., Moya, J.S., Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles (2009) Nanotechnology, 20, 6p. , 505701
dc.descriptionFujimori, Y., Sato, T., Hayata, T., Nagao, T., Nakayama, M., Nakayama, T., Sugamata, R., Suzuki, K., Novel antiviral characteristics of nanosized copper (I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus (2012) Appl Env Microbiol, 78 (4), pp. 951-955. , 10.1128/AEM.06284-11
dc.descriptionGaldiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., Galdiero, M., Silver nanoparticles as potential antiviral agents (2011) Molecules, 16, pp. 8894-8918. , 22024958 10.3390/molecules16108894
dc.descriptionGang, L., Xiaohong, L., Zhijun, Z., Preparation methods of copper nanomaterials (2011) Prog Chem, 23, pp. 1644-1656
dc.descriptionGiannossa, L.C., Longano, D., Ditaranto, N., Nitti, M.A., Paladini, F., Pollini, M., Rai, M., Cioffi, N., Metal nanoantimicrobials for textile applications (2013) Nanotechnol Rev, 2 (3), pp. 307-331. , 10.1515/ntrev-2013-0004
dc.descriptionGogoi, S.K., Gopinath, P., Paul, A., Ramesh, A., Ghosh, S.S., Chattopadhyay, A., Green fluorescent protein-expressing Escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles (2006) Langmuir, 22, pp. 9322-9328. , 17042548 10.1021/la060661v
dc.descriptionGopalakrishnan, K., Ramesh, C., Ragunathan, V., Thamilselvan, M., Antibacterial activity of Cu2O nanoparticles on E coli synthesized from tridax procumbens leaf extract and surface coating with polyaniline (2012) Dig J Nanomater Bio, 7 (2), pp. 833-839
dc.descriptionGyawali, R., Ibrahim, S.A., Abu-Hasfa, S.H., Smqadri, S.Q., Haik, Y., Antimicrobial activity of copper alone and in combination with lactic acid against Escherichia coli O157:H7 in laboratory medium and on the surface of lettuce and tomatoes (2011) J Pathogens, , 9 pages (Article ID 650968)
dc.descriptionHarne, S., Sharma, A., Dhaygude, M., Joglekar, S., Kodam, K., Hudlikar, M., Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. Latex and their cytotoxicity on tumor cells (2012) Colloids Surface B: Biointerf, 95, pp. 284-288. , 10.1016/j.colsurfb.2012.03.005
dc.descriptionHasan, S.S., Singh, S., Parikh, R.Y., Dharne, M.S., Patole, M.S., Prasad, B.L., Shouche, Y.S., Bacterial synthesis of copper/copper oxide nanoparticles (2008) J Nanosci Nanotechnol, 8 (6), pp. 3191-3196. , 18681067 10.1166/jnn.2008.095
dc.descriptionIngle, A.P., Gade, A.K., Pierrat, S., Sönnichsen, C., Rai, M.K., Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria (2008) Curr Nanosci, 4, pp. 141-144. , 10.2174/157341308784340804
dc.descriptionJose, G.P., Santra, S., Mandal, S.K., Sengupta, T.K., Singlet oxygen-mediated DNA degradation by copper nanoparticles: Potential towards cytotoxic effect on cancer cells (2011) J Nanobiotechnol, 9, p. 9. , 10.1186/1477-3155-9-9
dc.descriptionKim, J., Advances in nanotechnology and the environment (2011) Pan Stanford Publicaton, p. 232
dc.descriptionKim, J., Cho, H., Ryu, S., Choi, M., Effects of metal ions on the activity of protein tyrosine phosphatase VHR: Highly potent and reversible oxidative inactivation by Cu2+ ion (2000) Arch Biochem Biophys, 382, pp. 72-80. , 11051099 10.1006/abbi.2000.1996
dc.descriptionKim, Y.H., Lee, D.K., Cha, H.G., Kim, C.W., Kang, Y.C., Kang, Y.S., Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles (2006) J Phys Chem B, 110, pp. 24923-24928. , 17149913 10.1021/jp0656779
dc.descriptionKim, Y.H., Lee, D.K., Jo, B.G., Jeong, J.H., Kang, Y.S., Synthesis of oleate capped Cu nanoparticles by thermal decomposition (2006) Coll Surf A: Physiochem Eng Aspects, 284-285, pp. 364-368
dc.descriptionKim, Y.S., Kim, K.K., Shin, S., Park, S.M., Hah, S.S., Comparative toxicity studies of ultra-pure Ag, Au, Co, and Cu nanoparticles generated by laser ablation in biocompatible aqueous solution (2012) Bull Korean Chem Soc, 33, pp. 3265-3268. , 10.5012/bkcs.2012.33.10.3265
dc.descriptionLaha, D., Pramanik, A., Maity, J., Mukherjee, A., Pramanik, P., Laskar, A., Karmakar, P., Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7 (2013) Biochim Biophys Acta, 304 (13), pp. 00355-00363. , 10.1016/j.bbagen.2013.08.011
dc.descriptionLee, H.J., Lee, G., Jang, N.R., Yun, J.M., Song, J.Y., Kim, B.S., Biological synthesis of copper nanoparticles using plant extract (2011) Nanotechnology, 1, pp. 371-374
dc.descriptionLee, H.J., Song, J.Y., Kim, B.S., Biological synthesis of copper nanoparticles using magnolia kobus leaf extract and their antibacterial activity (2013) J Chem Technol Biotechnol, 88 (11), pp. 1971-1977. , 10.1002/jctb.4052
dc.descriptionLin, Y.E., Vidic, R.D., Stout, J.E., McCartney, C.A., Yu, V.L., Inactivation of Mycobacterium avium by copper and silver ions (1998) Water Res, 32 (7), pp. 1997-2000. , 10.1016/S0043-1354(97)00460-0
dc.descriptionLiu, Q., Zhou, D., Yamamoto, Y., Ichino, I., Okido, M., Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method (2012) Trans Nonferrous Metals Soc China, 22, pp. 117-123. , 10.1016/S1003-6326(11)61149-7
dc.descriptionLlorens, A., Lloret, E., Picouet, P., Fernandez, A., Study of the antifungal potential of novel cellulose/copper composites as absorbent materials for fruit juices (2012) Int J Food Microbiol, 158 (2), pp. 113-119. , 22835229 10.1016/j.ijfoodmicro.2012.07.004
dc.descriptionLongano, D., Ditaranto, N., Sabbatini, L., Torsi, L., Cioffi, N., Synthesis and antimicrobial activity of copper nanomaterials (2012) Nano-Antimicrobials: Progress and Prospects, pp. 85-118. , N. Cioffi M. Rai (eds) Springer Germany 10.1007/978-3-642-24428-5-3
dc.descriptionMahapatra, S.S., Karak, N., Hyperbranched polyamine/Cu nanoparticles for epoxy thermoset (2009) J Macromol Sci, 46, pp. 296-303. , 10.1080/10601320802637375
dc.descriptionMajumber, D.R., Bioremediation: Copper nanoparticles from electronic-waste (2012) Inter J Eng Sci Technol, 4, pp. 4380-4389
dc.descriptionMohanpuria, P., Rana, N.K., Yadav, S.K., Biosynthesis of nanoparticles: Technological concepts and future applications (2008) J Nanopart Res, 10, pp. 507-517. , 10.1007/s11051-007-9275-x
dc.descriptionMorones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T., Yacaman, M.J., The bactericidal effect of silver nanoparticles (2005) Nanotechnology, 16, pp. 2346-2353. , 20818017 10.1088/0957-4484/16/10/059
dc.descriptionNakamura, T., Tsukahara, Y., Sakata, T., Mori, H., Kanbe, Y., Bessho, H., Wada, Y., Preparation of monodispersed Cu nanoparticles by microwave-assisted alcohol reduction (2007) Bull Chem Soc Japan, 80, pp. 224-232. , 10.1246/bcsj.80.224
dc.descriptionNakamura, T., Tsukahara, Y., Yamauchi, T., Sakata, T., Mori, H., Wada, Y., Preparation of Ag core-Cu shell nanoparticles by microwave-assisted alcohol reduction process (2007) Chem Lett, 36 (1), pp. 154-155. , 10.1246/cl.2007.154
dc.descriptionPark, B.K., Jeong, S., Kim, D., Moon, J., Lim, S., Kim, J.S., Synthesis and size control of monodisperse copper nanoparticles by polyol method (2007) J Colloid Interface Sci, 311, pp. 417-424. , 17448490 10.1016/j.jcis.2007.03.039
dc.descriptionPetranovskii, V., Panina, L., Bogomolova, E., Belostotskaya, G., Microbiologically active nanocomposite media (2003) Proceed SPIE, 5218, pp. 244-255. , 10.1117/12.506532
dc.descriptionPrabhu, B.M., Ali, S.F., Murdock, R.C., Hussain, S.M., Srivatsan, M., Copper nanoparticles exert size and concentration dependent toxicity on somatosensory neurons of rat (2010) Nanotoxicology, 4 (2), pp. 150-160. , 2882306 20543894 10.3109/17435390903337693
dc.descriptionRaffi, M., Mehrwan, S., Bhatti, T.M., Akhter, J.I., Hameed, A., Yawar, W., M-Ul Hasan, M., Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli (2010) Ann Microbiol, 60, pp. 75-80. , 10.1007/s13213-010-0015-6
dc.descriptionRai, M.K., Yadav, A.P., Gade, A.K., Silver nanoparticles as a new generation of antimicrobials (2009) Biotechnol Adv, 27 (1), pp. 76-82. , 18854209 10.1016/j.biotechadv.2008.09.002
dc.descriptionRai, M.K., Deshmukh, S.D., Ingle, A.P., Gade, A.K., Silver nanoparticles: The powerful nano-weapon against multidrug-resistant bacteria (2012) J App Microbiol, 112, pp. 841-852. , 10.1111/j.1365-2672.2012.05253.x
dc.descriptionRamanathan, R., Bhargava, S.K., Bansal, V., Biological synthesis of copper/copper oxide nanoparticles (2011) Chemca Conference, 466. , http://www.conference.net.au/chemeca, (accessed on August 14, 2013)
dc.descriptionRamyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., Rahuman, A.A., Santhoshkumar, T., Kirthi, A.V., Marimuthu, S., Copper nanoparticles synthesized by polyol process used to control hematophagous parasites (2011) Parasitol Res, 109, pp. 1403-1415. , 21526405 10.1007/s00436-011-2387-3
dc.descriptionRamyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., Rahuman, A.A., Synthesis and antimicrobial activity of copper nanoparticles (2012) Mater Lett, 71, pp. 114-116. , 10.1016/j.matlet.2011.12.055
dc.descriptionRen, G., Hu, D., Cheng, E.W.C., Vargas-Reus, M.A., Reip, P., Allaker, R.P., Characterization of copper oxide nanoparticles for antimicrobial applications (2009) Int J Antimicrob Agents, 33, pp. 587-590. , 19195845 10.1016/j.ijantimicag.2008.12.004
dc.descriptionRuparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., Mukherji, S., Strain specificity in antimicrobial activity of silver and copper nanoparticles (2008) Acta Biomater, 4, pp. 707-716. , 18248860 10.1016/j.actbio.2007.11.006
dc.descriptionSchrand, A.M., Rahman, M.F., Hussain, S.M., Schlager, J.J., Smith, D.A., Syed, A.F., Metal-based nanoparticles and their toxicity assessment (2010) WIREs Nanomed Nanobiotechnol, 2, pp. 554-568. , 10.1002/wnan.103
dc.descriptionShionoiri, N., Sato, T., Fujimori, Y., Nakayama, T., Nemoto, M., Matsunaga, T., Tanaka, T., Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus (2012) J Biosci Bioeng, 113 (5), pp. 580-586. , 22227118 10.1016/j.jbiosc.2011.12.006
dc.descriptionSiddiqui, M.A., Alhadlaq, H.A., Ahmad, J., Al-Khedhairy, A.A., Musarrat, J., Ahamed, M., Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells (2013) PLoS One, 8 (8), p. 69534. , 10.1371/journal.pone.0069534 3734287 23940521 10.1371/journal.pone.0069534
dc.descriptionSondi, I., Salopek-Sondi, B., Silver nanoparticles as antimicrobial agent: A case study on E coli as a model for gram-negative bacteria (2004) J Colloid Interf Sci, 275, pp. 177-182. , 10.1016/j.jcis.2004.02.012
dc.descriptionStohs, S.J., Bagchi, D., Oxidative mechanisms in the toxicity of metal ions (1995) Free Radical Biol Med, 18, pp. 321-336. , 10.1016/0891-5849(94)00159-H
dc.descriptionSurendiran, A., Sandhiya, S., Pradhan, S.C., Adithan, C., Novel applications of nanotechnology in medicine (2009) Indian J Med Res, 130, pp. 689-701. , 20090129
dc.descriptionTanejia, S.K., Dhiman, R.K., Prevention and management of bacterial infections in Cirrhosis (2011) Int J Hepatol, , Article ID 784540, 7 pages
dc.descriptionTauran, Y., Brioude, A., Coleman, A.W., Rhimi, M., Kim, B., Molecular recognition by gold, silver, and copper nanoparticles (2013) World J Bio Chem, 4 (3), pp. 35-63
dc.descriptionTeli, M.D., Sheikh, J., Modified bamboo rayon-copper nanoparticle composites as antibacterial textiles (2013) Int J Bio Macromol, 61, pp. 302-307. , 10.1016/j.ijbiomac.2013.07.015
dc.descriptionThakkar, K.N., Mhatre, S.S., Parikh, R.Y., Biological synthesis of metallic nanoparticles (2010) Nanomed Nanotechnol Bio Med, 6 (2), pp. 257-262. , 10.1016/j.nano.2009.07.002
dc.descriptionTheivasanthi, T., Alagar, M., Studies of copper nanoparticles effects on microorganisms (2011) Annals Biol Res, 2 (3), pp. 368-373
dc.descriptionTheron, J., Walker, J.A., Cloete, T.E., Nanotechnology and water treatment: Applications and emerging opportunities (2008) Crit Rev Microbiol, 34 (1), pp. 43-69. , 18259980 10.1080/10408410701710442
dc.descriptionUmer, A., Naveed, S., Ramzan, N., Rafique, M.S., Selection of a suitable method for the synthesis of copper nanoparticles (2012) NANO: Brief Reports Rev, 7, p. 1230005. , 10.1142/S1793292012300058
dc.descriptionUsha, R., Prabu, E., Palaniswamy, M., Venil, C.K., Rajendran, R., Synthesis of metal oxide nanoparticles by Streptomyces sp for development of antimicrobial textiles (2010) Global J Biotechnol Biochem, 5 (3), pp. 153-160
dc.descriptionUsman, M.S., Ibrahim, N.A., Shameli, K., Zainuddin, N., Junus, W., Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods (2012) Molecules, 17, pp. 14928-14936. , 23242252 10.3390/molecules171214928
dc.descriptionValodkar, V., Jadeja, R.N., Thounaojam, M.C., Devkar, R.V., Thakore, S., Biocompatible synthesis of peptide capped copper nanoparticles and their biological effect on tumor cells (2011) Mater Chem Phys, 128, pp. 83-89. , 10.1016/j.matchemphys.2011.02.039
dc.descriptionVarshney, R., Bhadauria, S., Gaur, M.S., Pasricha, R., Characterization of copper nanoparticles synthesized by a novel microbiological method (2010) JOM-J Miner Met Mater Soc, 62, pp. 102-104. , 10.1007/s11837-010-0171-y
dc.descriptionVarshney, R., Bhadauria, S., Gaur, M.S., Pasricha, R., Copper nanoparticles synthesis from electroplating industry effluent (2011) Nano Biomed Eng, 3, pp. 115-119. , 10.5101/nbe.v3i2.p115-119
dc.descriptionXu, J.F., Ji, W., Shen, Z.X., Tang, S.H., Ye, X.R., Jia, D.Z., Xin, S.Q., Preparation and characterization of CuO nanocrystals (1999) J Solid State Chem, 147, pp. 516-519. , 10.1006/jssc.1999.8409
dc.descriptionXu, P., Xu, J., Liu, S., Ren, G., Yang, Z., In vitro toxicity of nanosized copper particles in PC12 cells induced by oxidative stress (2012) J Nanopart Res, 14, p. 906. , 1-9
dc.descriptionYang, Z., Liu, Z.W., Allaker, R.P., Reip, P., Oxford, J., Ahmad, Z., Ren, G., A review of nanoparticle functionality and toxicity on the central nervous system (2010) J R Soc Interface, 7, pp. 411-422. , 2943893 20519209 10.1098/rsif.2010.0158.focus
dc.descriptionYoon, K.Y., Byeon, J.H., Park, J.H., Hwang, J., Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles (2007) Sci Total Environ, 373, pp. 572-575. , 17173953 10.1016/j.scitotenv.2006.11.007
dc.descriptionZhang, Q.L., Yang, Z.M., Ding, B.J., Lan, X.Z., Guo, Y.J., Preparation of copper nanoparticles by chemical reduction method using potassium borohydride (2010) Tran Nonferrous Metals Soc China, 20, pp. 240-s244
dc.languageen
dc.publisherSpringer Verlag
dc.relationApplied Microbiology and Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleBioactivity, Mechanism Of Action, And Cytotoxicity Of Copper-based Nanoparticles: A Review
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución