dc.creatorHeeres A.S.
dc.creatorPicone C.S.F.
dc.creatorvan der Wielen L.A.M.
dc.creatorCunha R.L.
dc.creatorCuellar M.C.
dc.date2014
dc.date2015-06-25T18:02:34Z
dc.date2015-11-26T15:04:42Z
dc.date2015-06-25T18:02:34Z
dc.date2015-11-26T15:04:42Z
dc.date.accessioned2018-03-28T22:15:32Z
dc.date.available2018-03-28T22:15:32Z
dc.identifier
dc.identifierTrends In Biotechnology. Elsevier Ltd, v. 32, n. 4, p. 221 - 229, 2014.
dc.identifier1677799
dc.identifier10.1016/j.tibtech.2014.02.002
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84896543544&partnerID=40&md5=b3a0096a1d2045126c0ced0aece919ee
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87859
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87859
dc.identifier2-s2.0-84896543544
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256913
dc.descriptionIsoprenoids and alkanes produced and secreted by microorganisms are emerging as an alternative biofuel for diesel and jet fuel replacements. In a similar way as for other bioprocesses comprising an organic liquid phase, the presence of microorganisms, medium composition, and process conditions may result in emulsion formation during fermentation, hindering product recovery. At the same time, a low-cost production process overcoming this challenge is required to make these advanced biofuels a feasible alternative. We review the main mechanisms and causes of emulsion formation during fermentation, because a better understanding on the microscale can give insights into how to improve large-scale processes and the process technology options that can address these challenges. © 2014 Elsevier Ltd.
dc.description32
dc.description4
dc.description221
dc.description229
dc.descriptionDemirbas, A., Political, economic and environmental impacts of biofuels: a review (2009) Appl. Energy, 86, pp. S108-S117
dc.descriptionRo, D.-K., Production of the antimalarial drug precursor artemisinic acid in engineered yeast (2006) Nature, 440, pp. 940-943
dc.descriptionSchalk, M., Firmenich, S.A., Method for producing beta-santalene, US20110281257 A1Wang, C., Microbial production of farnesol (FOH): current states and beyond (2011) Process Biochem., 46, pp. 1221-1229
dc.descriptionRenniger, N.S., McPhee, D.J., Amyris Biotechnologies. Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same, US7399323 B2Westfall, P.J., Gardner, T.S., Industrial fermentation of renewable diesel fuels (2011) Curr. Opin. Biotechnol., 22, pp. 344-350
dc.descriptionPeralta-Yahya, P.P., Identification and microbial production of a terpene-based advanced biofuel (2011) Nat. Commun., 2, p. 483
dc.descriptionWarui, D.M., Detection of formate, rather than carbon monoxide, as the stoichiometric coproduct in conversion of fatty aldehydes to alkanes by a cyanobacterial aldehyde decarbonylase (2011) J. Am. Chem. Soc., 133, pp. 3316-3319
dc.descriptionHoward, T.P., Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli (2013) Proc. Natl. Acad. Sci. U.S.A., 110, pp. 7636-7641
dc.descriptionSchirmer, A., Microbial biosynthesis of alkanes (2010) Science, 329, pp. 559-562
dc.descriptionDomínguez de María, P., Recent developments in the biotechnological production of hydrocarbons: paving the way for bio-based platform chemicals (2011) ChemSusChem, 4, pp. 327-329
dc.descriptionTabur, P., Dorin, G., Amyris Biotechnologies, , Method for purifying bio-organic compounds from fermentation broth containing surfactants by temperature-induced phase inversion, US20120040396
dc.descriptionNeu, T.R., Significance of bacterial surface-active compounds in interaction of bacteria with interfaces (1996) Microbiol. Rev., 60, pp. 151-166
dc.descriptionPedetta, A., Phenanthrene degradation and strategies to improve its bioavailability to microorganisms isolated from brackish sediments (2013) Int. Biodeterior. Biodegrad., 84, pp. 161-167
dc.descriptionBanat, I.M., Microbial biosurfactants production, applications and future potential (2010) Appl. Microbiol. Biotechnol., 87, pp. 427-444
dc.descriptionJain, R.M., Isolation and structural characterization of biosurfactant produced by an alkaliphilic bacterium Cronobacter sakazakii isolated from oil contaminated wastewater (2012) Carbohydr. Polym., 87, pp. 2320-2326
dc.descriptionJanek, T., Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2 (2013) Colloids Surf. B: Biointerfaces, 110, pp. 379-386
dc.descriptionBerton, C., Quantification of unadsorbed protein and surfactant emulsifiers in oil-in-water emulsions (2011) J. Colloid Interface Sci., 354, pp. 739-748
dc.descriptionMukherjee, A.K., Das, K., Microbial surfactants and their potential applications: an overview (2010) Biosurfactants, pp. 54-64. , Springer, R. Sen (Ed.)
dc.description(1987) Biosurfactants and Biotechnology, , Marcel Dekker, N. Kosaric (Ed.)
dc.descriptionHealy, M.G., Microbial production of biosurfactants (1996) Resour. Conserv. Recycl., 18, pp. 41-57
dc.descriptionCameotra, S.S., Makkar, R.S., Recent applications of biosurfactants as biological and immunological molecules (2004) Curr. Opin. Microbiol., 7, pp. 262-266
dc.descriptionBenincasa, M., Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock (2004) Antonie Van Leeuwenhoek, 85, pp. 1-8
dc.descriptionLovaglio, R.B., Rhamnolipid emulsifying activity and emulsion stability: pH rules (2011) Colloids Surf. B: Biointerfaces, 85, pp. 301-305
dc.descriptionPrieto, L.M., The production of rhamnolipid by a Pseudomonas aeruginosa strain isolated from a southern coastal zone in Brazil (2008) Chemosphere, 71, pp. 1781-1785
dc.descriptionPornsunthorntawee, O., Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil (2008) Bioresour. Technol., 99, pp. 1589-1595
dc.descriptionTreichel, H., A review on microbial lipases production (2010) Food Bioprocess Technol., 3, pp. 182-196
dc.descriptionLienemann, M., Structure-function relationships in hydrophobins: probing the role of charged side chains (2013) Appl. Environ. Microbiol., 79, pp. 5533-5538
dc.descriptionSong, C.-S., Molecular behavior of a microbial lipopeptide monolayer at the air-water interface (2007) Colloid Surf. A, 302, pp. 82-87
dc.descriptionDeleu, M., Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis (1999) Colloid Surf. A, 152, pp. 3-10
dc.descriptionRosenberg, E., Ron, E.Z., High- and low-molecular-mass microbial surfactants (1999) Appl. Microbiol. Biotechnol., 52, pp. 154-162
dc.descriptionPeypoux, F., Recent trends in the biochemistry of surfactin (1999) Appl. Microbiol. Biotechnol., 51, pp. 553-563
dc.descriptionLang, S., Biological amphiphiles (microbial biosurfactants) (2002) Curr. Opin. Colloid Interface Sci., 7, pp. 12-20
dc.descriptionVater, J., Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge (2002) Appl. Environ. Microbiol., 68, pp. 6210-6219
dc.descriptionMirtallo, J.M., State of the art review: intravenous fat emulsions: current applications, safety profile, and clinical implications (2010) Ann. Pharmacother., 44, pp. 688-700
dc.descriptionKnoth, A., Stability of water-in-oil-emulsions containing phosphatidylcholine-depleted lecithin (2005) Food Hydrocolloid, 19, pp. 635-640
dc.descriptionCameron, D.R., The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier (1988) Appl. Environ. Microbiol., 54, pp. 1420-1425
dc.descriptionBarriga, J.A.T., Components of the bioemulsifier from S. cerevisiae (1999) Enzyme Microb. Technol., 25, pp. 96-102
dc.descriptionRajakylä, E., Paloposki, M., Determination of sugars (and betaine) in molasses by high-performance liquid chromatography: comparison of the results with those obtained by the classical lane-eynon method (1983) J. Chromatogr. A, 282, pp. 595-602
dc.descriptionAlmeida, J.R.M., Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae (2007) J. Chem. Technol. Biotechnol., 82, pp. 340-349
dc.descriptionMohebali, G., Stabilization of water/gas oil emulsions by desulfurizing cells of Gordonia alkanivorans RIPI90A (2007) Microbiology, 153, pp. 1573-1581
dc.descriptionDorobantu, L.S., Stabilization of oil-water emulsions by hydrophobic bacteria (2004) Appl. Environ. Microbiol., 70, pp. 6333-6336
dc.descriptionBinks, B.P., Particles as surfactants - similarities and differences (2002) Curr. Opin. Colloid Interface Sci., 7, pp. 21-41
dc.descriptionDickinson, E., Use of nanoparticles and microparticles in the formation and stabilization of food emulsions (2012) Trends Food Sci. Technol., 24, pp. 4-12
dc.descriptionChevalier, Y., Bolzinger, M.-A., Emulsions stabilized with solid nanoparticles: Pickering emulsions (2013) Colloid Surf. A, 439, pp. 23-34
dc.descriptionHuang, X., Separation and characterization of effective demulsifying substances from surface of Alcaligenes sp. S-XJ-1 and its application in water-in-kerosene emulsion (2013) Bioresour. Technol., 139, pp. 257-264
dc.descriptionAkartuna, I., Stabilization of oil-in-water emulsions by colloidal particles modified with short amphiphiles (2008) Langmuir, 24, pp. 7161-7168
dc.descriptionLy, M.H., Importance of bacterial surface properties to control the stability of emulsions (2006) Int. J. Food Microbiol., 112, pp. 26-34
dc.descriptionPoortinga, A.T., Electric double layer interactions in bacterial adhesion to surfaces (2002) Surf. Sci. Rep., 47, pp. 1-32
dc.descriptionMarinova, K.G., Charging of oil-water interfaces due to spontaneous adsorption of hydroxyl ions (1996) Langmuir, 12, pp. 2045-2051
dc.descriptionMcClements, D.J., Protein-stabilized emulsions (2004) Curr. Opin. Colloid Interface Sci., 9, pp. 305-313
dc.descriptionOlofsson, K., A short review on SSF-an interesting process option for ethanol production from lignocellulosic feedstocks (2008) Biotechnol. Biofuels, 1, pp. 1-14
dc.descriptionReuß, M., Viscosity of yeast suspensions (1979) Eur. J. Appl. Microbiol. Biotechnol., 8, pp. 167-175
dc.descriptionMcClements, D.J., (2005) Food Emulsions, Principles, Practices, and Techniques, , CRC Press
dc.descriptionWalstra, P., Principles of emulsion formation (1993) Chem. Eng. Sci., 48, pp. 333-349
dc.descriptionDesai, J.D., Banat, I.M., Microbial production of surfactants and their commercial potential (1997) Microbiol. Mol. Biol. Rev., 61, pp. 47-64
dc.descriptionSareen, S.S., Coalescence in fibrous beds (1966) AIChE J., 12, pp. 1045-1050
dc.descriptionHlavacek, M., Break-up of oil-in-water emulsions induced by permeation through a microfiltration membrane (1995) J. Membr. Sci., 102, pp. 1-7
dc.descriptionvan Reis, R., Zydney, A., Membrane separations in biotechnology (2001) Curr. Opin. Biotechnol., 12, pp. 208-211
dc.descriptionSchlieper, L., Liquid-liquid phase separation in gravity settler with inclined plates (2004) AIChE J., 50, pp. 802-811
dc.descriptionLaleh, A.P., Design and CFD studies of multiphase separators-a review (2012) Can. J. Chem. Eng., 90, pp. 1547-1561
dc.descriptionGrace, R., Commercial emulsion breaking (1992) Emulsions, pp. 313-339. , American Chemical Society, L.L. Schramm (Ed.)
dc.descriptionYoung, G.A.B., Oil-water separation using hydrocyclones: an experimental search for optimum dimensions (1994) J. Petrol. Sci. Eng., 11, pp. 37-50
dc.descriptionMeldrum, N., Hydrocyclones: a solution to produced-water treatment (1988) SPE Prod. Eng., 3, pp. 669-676
dc.descriptionYu, L.Q., World Intellectual Property Organization. Oil/water/biocatalyst three phase separation process, US5772901Rubio, J., Overview of flotation as a wastewater treatment technique (2002) Miner. Eng., 15, pp. 139-155
dc.descriptionAl-Shamrani, A.A., Destabilisation of oil-water emulsions and separation by dissolved air flotation (2002) Water Res., 36, pp. 1503-1512
dc.descriptionSchroën, C.G.P.H., Woodley, J.M., Membrane separation for downstream processing of aqueous-organic bioconversions (1997) Biotechnol. Prog., 13, pp. 276-283
dc.descriptionSchmid, A., Developments toward large-scale bacterial bioprocesses in the presence of bulk amounts of organic solvents (1998) Extremophiles, 2, pp. 249-256
dc.descriptionBrandenbusch, C., Efficient phase separation and product recovery in organic-aqueous bioprocessing using supercritical carbon dioxide (2010) Biotechnol. Bioeng., 107, pp. 642-651
dc.descriptionLeppchen, K., Microbial de-emulsification: a highly efficient procedure for the extractive workup of whole-cell biotransformations (2006) Org. Process Res. Dev., 10, pp. 1119-1125
dc.descriptionWilde, P., Proteins and emulsifiers at liquid interfaces (2004) Adv. Colloid Interface Sci., pp. 63-71
dc.descriptionPrins, A., van't Riet, K., Proteins and surface effects in fermentation: foam, antifoam and mass transfer (1987) Trends Biotechnol., 5, pp. 296-301
dc.descriptionChoi, O.K., Enhancement of phase separation by the addition of de-emulsifiers to three-phase (diesel oil/biocatalyst/aqueous phase) emulsion in diesel biodesulfurization (2003) Biotechnol. Lett., 25, pp. 73-77
dc.descriptionPrasad, K., Cost cutting strategies in downstream processing industry (2012) Downstream Process Technology: A New Horizon in Biotechnology, pp. 32-39. , PHI Learning Pvt, K. Prasad (Ed.)
dc.descriptionRude, M.A., Schirmer, A., New microbial fuels: a biotech perspective (2009) Curr. Opin. Biotechnol., 12, pp. 274-281
dc.descriptionBullis, K., Why Amyris is focusing on moisturizers, not fuel, for now (2012) MIT Technology Review, , http://www.technologyreview.com/news/427890/why-amyris-is-focusing-on-moisturizers-not-fuel-for-now/, MIT Press
dc.descriptionCuellar, M.C., Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development (2013) Biotechnol. J., 8, pp. 682-689
dc.descriptionEfe, C., (2007) Technical and Economical Feasibility of Production of Ethanol from Sugar Cane and Sugar Cane Bagasse, , http://repository.tudelft.nl/view/ir/uuid:5f3b7381-0da3-4d26-b334-9b4856ecacda/, B-Basic Report
dc.descriptionTaylor, P., Ostwald ripening in emulsions (1998) Adv. Colloid Interface Sci., 75, pp. 107-163
dc.descriptionArima, K., Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation (1968) Biochem. Biophys. Res. Commun., 31, pp. 488-494
dc.descriptionLarge, K.P., The effect of agitation rate on lipid utilisation and clavulanic acid production in Streptomyces clavuligerus (1998) J. Biotechnol., 63, pp. 111-119
dc.descriptionGalindo, E., Study of drop and bubble sizes in a simulated mycelial fermentation broth of up to four phases (2000) Biotechnol. Bioeng., 69, pp. 213-221
dc.descriptionClarke, K.G., Correia, L.D.C., Oxygen transfer in hydrocarbon-aqueous dispersions and its applicability to alkane bioprocesses: a review (2008) Biochem. Eng. J., 39, pp. 405-429
dc.descriptionErler, S., Oil/water and pre-emulsified oil/water (PIT) dispersions in a stirred vessel: implications for fermentations (2003) Biotechnol. Bioeng., 82, pp. 543-551
dc.descriptionRon, E., Rosenberg, E., Role of biosurfactants (2010) Handbook of Hydrocarbon and Lipid Microbiology, pp. 2515-2518. , Springer-Verlag, K.N. Timmis (Ed.)
dc.descriptionAbbasnezhad, H., Influence of adhesion on aerobic biodegradation and bioremediation of liquid hydrocarbons (2011) Appl. Microbiol. Biotechnol., 92, pp. 653-675
dc.descriptionLawniczak, L., Contributions of biosurfactants to natural or induced bioremediation (2013) Appl. Microbiol. Biotechnol., 97, pp. 2327-2339
dc.descriptionBabich, I.V., Moulijn, J.A., Science and technology of novel processes for deep desulfurization of oil refinery streams: a review (2003) Fuel, 82, pp. 607-631
dc.descriptionMonticello, D.J., Biodesulfurization and the upgrading of petroleum distillates (2000) Curr. Opin. Biotechnol., 11, pp. 540-546
dc.descriptionLye, G.J., Woodley, J.M., Application of in situ product-removal techniques to biocatalytic processes (1999) Trends Biotechnol., 17, pp. 395-402
dc.descriptionStraathof, A.J.J., Auxiliary phase guidelines for microbial biotransformations of toxic substrate into toxic product (2003) Biotechnol. Prog., 19, pp. 755-762
dc.descriptionLaane, C., Rules for optimization of biocatalysis in organic solvents (1987) Biotechnol. Bioeng., 30, pp. 81-87
dc.languageen
dc.publisherElsevier Ltd
dc.relationTrends in Biotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleMicrobial Advanced Biofuels Production: Overcoming Emulsification Challenges For Large-scale Operation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución