dc.creatorFaria F.A.
dc.creatorDos Santos J.A.
dc.creatorRocha A.
dc.creatorTorres R.D.S.
dc.date2014
dc.date2015-06-25T18:02:35Z
dc.date2015-11-26T15:04:41Z
dc.date2015-06-25T18:02:35Z
dc.date2015-11-26T15:04:41Z
dc.date.accessioned2018-03-28T22:15:31Z
dc.date.available2018-03-28T22:15:31Z
dc.identifier
dc.identifierPattern Recognition Letters. , v. 39, n. 1, p. 52 - 64, 2014.
dc.identifier1678655
dc.identifier10.1016/j.patrec.2013.07.014
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84893743223&partnerID=40&md5=4ecca059866a8dd156f6983affe82266
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87862
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87862
dc.identifier2-s2.0-84893743223
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256910
dc.descriptionThe frequent growth of visual data, either by countless monitoring video cameras wherever we go or the popularization of mobile devices that allow each person to create and edit their own images and videos have contributed enormously to the so-called big-data revolution. This shear amount of visual data gives rise to a Pandora box of new visual classification problems never imagined before. Image and video classification tasks have been inserted in different and complex applications and the use of machine learning-based solutions has become the most popular approach for several applications. Notwithstanding, there is no silver bullet that solves all the problems, i.e., it is not possible to characterize all images of different domains with the same description method nor is it possible to use the same learning method to achieve good results in any kind of application. In this work, we aim at proposing a framework for classifier selection and fusion. Our method seeks to combine image characterization and learning methods by means of a meta-learning approach responsible for assessing which methods contribute more towards the solution of a given problem. The framework uses a strategy of classifier selection which pinpoints the less correlated, yet effective, classifiers through a series of diversity measures analysis. The experiments show that the proposed approach achieves comparable results to well-known algorithms from the literature on four different applications but using less learning and description methods as well as not incurring in the curse of dimensionality and normalization problems common to some fusion techniques. Furthermore, our approach is able to achieve effective classification results using very reduced training sets. The proposed method is also amenable to continuous learning and flexible enough for implementation in highly-parallel architectures. © 2013 Elsevier B.V. All rights reserved.
dc.description39
dc.description1
dc.description52
dc.description64
dc.descriptionAntonie, M.-L., Zaïane, O.R., Coman, A., Application of data mining techniques for medical image classification (2001) Workshop on Multimedia Data Mining at ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pp. 94-101
dc.descriptionBenediktsson, J.A., Sveinsson, J.R., Ersoy, O.K., Swain, P.H., Parallel consensual neural networks (1997) IEEE Transactions on Neural Networks, 8 (1), pp. 54-64. , PII S1045922797002385
dc.descriptionBishop, C.M., (2006) Pattern Recognition and Machine Learning (Information Science and Statistics), , first ed. Springer Verlag New York, Inc., Secaucus, NJ, USA
dc.descriptionBoser, B.E., Guyon, I.M., Vapnik, V.N., A training algorithm for optimal margin classifiers (1992) Workshop on Computational Learning Theory, pp. 144-152
dc.descriptionBreiman, L., Bagging predictors (1996) Machine Learning, 24 (2), pp. 123-140
dc.descriptionBreiman, L., Random forests (2001) Machine Learning, 45 (1), pp. 5-32. , DOI 10.1023/A:1010933404324
dc.descriptionBrennan, R.L., Prediger, D.J., Coefficient kappa: Some uses, misuses, and alternatives (1981) Educ. Psychol. Meas., 41 (3), pp. 687-699
dc.descriptionBrooks, D. 2013. The philosophy of data. In: The New York Times, A23, February, 5thChang, C.-C., Lin, C.-J., LIBSVM: A library for support vector machines (2011) ACM Trans. Intell. Syst. Technol., 2 (3), pp. 271-2727
dc.descriptionCristianini, N., Shawe-Taylor, J., (2000) An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, , Cambridge University Press
dc.descriptionDeng, J., Berg, A.C., Li, K., Fei-Fei, L., What does classifying more than 10,000 image categories tell us (2010) European Conf. on Computer Vision, , Springer-Verlag Berlin, Heidelberg 71-84
dc.descriptionDos Santos, J.A., Penatti, O.A.B., Torres, R., Da, S., Evaluating the potential of texture and color descriptors for remote sensing image retrieval and classification (2010) Int. Conf. on Computer Vision Theory and Applications, pp. 203-208
dc.descriptionDos Santos, J.A., Faria, F.A., Torres, R., Da, S., Rocha, A., Gosselin, P.-H., Philipp-Foliguet, S., Falcao, A., Descriptor correlation analysis for remote sensing image multi-scale classification (2012) 21st International Conference On, Pattern Recognition (ICPR) 2012, pp. 3078-3081
dc.descriptionDos Santos, J.A., Gosselin, P.-H., Philipp-Foliguet, S., Torres, R.D.S., Falcão, A.X., Interactive multiscale classification of high-resolution remote sensing images, selected topics in applied earth observations and remote sensing (2013) IEEE J. PP, (99), pp. 1-15
dc.descriptionDuin, R.P.W., Pekalska, E., Open issues in pattern recognition (2005) Int. Conf. on Computer Recognition Systems (CORE), 30, pp. 27-42
dc.descriptionDžeroski, S., Ženko, B., Is combining classifiers with stacking better than selecting the best one (2004) Mach. Learn., 54 (3), pp. 255-273
dc.descriptionFaria, F.A., Calumby, R.T., Torres, R., Da, S., RECOD at ImageCLEF 2011: Medical modality classification using genetic programming (2011) CLEF (Notebook Papers/Labs/Workshop), pp. 1-8
dc.descriptionFaria, F.A., Dos Santos, J.A., Torres, R., Da, S., Rocha, A., Falcão, A.X., Automatic fusion of region-based classifiers for coffee crop recognition (2012) IEEE Geoscience and Remote Sensing Symposium, pp. 2221-2224
dc.descriptionFaria, F.A., Dos Santos, J.A., Rocha, A., Torres, R., Da, S., Automatic Classifier Fusion for Produce Recognition (2012) Conf. on Graphics, Patterns and Images, pp. 252-259
dc.descriptionFei-Fei, L., Fergus, R., Perona, P., Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories (2004) IEEE Int. Conf. on Computer Vision and Pattern Recognition Workshop, p. 178
dc.descriptionFernando, B., Fromont, E., Muselet, D., Sebban, M., Discriminative feature fusion for image classification (2012) IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 3434-3441
dc.descriptionFreund, Y., Schapire, R.E., Experiments with a new boosting algorithm (1996) Int. Conf. on Machine Learning, pp. 148-156
dc.descriptionFriedman, J., Hastie, T., Tibshirani, R., (2001) The Elements of Statistical Learning, , first ed. Springer
dc.descriptionGehler, P., Nowozin, S., On feature combination for multiclass object classification (2009) Intl. Conf. on Computer Vision, pp. 221-228
dc.descriptionGuigues, L., Cocquerez, J.P., Le Men, H., Scale-sets image analysis (2006) International Journal of Computer Vision, 68 (3), pp. 289-317. , DOI 10.1007/s11263-005-6299-0
dc.descriptionHampshire, I.B.J., Waibel, A., The Meta-Pi network: Building distributed knowledge representations for robust multisource pattern recognition (1992) IEEE Trans. Pattern Anal. Mach. Intell., 14 (7), pp. 751-769
dc.descriptionHarchaoui, Z., Douze, M., Paulin, M., Dudik, M., Malick, J., Large-scale image classification with trace-norm regularization (2012) IEEE Intl. Conf. on Computer Vision and Pattern Recognition, pp. 3386-3393. , 2012
dc.descriptionHo, T.K., Hull, J., Srihari, S., Decision combination in multiple classifier systems (1994) IEEE Trans. Pattern Anal. Mach. Intell., 16 (1), pp. 66-75
dc.descriptionHong, J.-H., Min, J.-K., Cho, U.-K., Cho, S.-B., Fingerprint classification using one-vs-all support vector machines dynamically ordered with nai{dotless}ve Bayes classifiers (2008) Pattern Recognition, 41 (2), pp. 662-671. , DOI 10.1016/j.patcog.2007.07.004, PII S0031320307003299
dc.descriptionHou, J., Zhang, B.-P., Qi, N.-M., Yang, Y., Evaluating feature combination in object classification Int. Conf. on Advances in Visual Computing - Volume Part II, pp. 597-606
dc.descriptionHuang, C., Liu, Q., An orientation independent texture descriptor for image retrieval (2007) Int. Conf. on Computational Science, pp. 772-776
dc.descriptionHuang, J., Kumar, R., Mitra, V., Zhu, W., Zabih, R., Image indexing using color correlograms (1997) IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 762-768
dc.descriptionJurek, A., Bi, Y., Wu, S., Nugent, C., Classification by cluster analysis: A new meta-learning based approach (2011) Int. Conf. on Multiple Classifier Systems, pp. 259-268
dc.descriptionKendall, M.G., A new measure of rank correlation (1938) Biometrika, 30 (12), pp. 81-93
dc.descriptionKim, S.D., Baek, Y.-M., Kim, W.-Y., Reducing overfitting of AdaBoost by clustering-based pruning of hard examples (2013) Proceedings of the 7th International Conference on Ubiquitous Information Management and Communication, p. 90
dc.descriptionKo, B., Gim, J., Nam, J., Cell image classification based on ensemble features and random forest (2011) Electron. Lett., 47 (11), pp. 638-639
dc.descriptionKuncheva, L.I., Whitaker, C.J., Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy (2003) Mach. Learn., 51 (2), pp. 181-207
dc.descriptionLin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L., Huang, T., Large-scale image classification: Fast feature extraction and SVM trainingA (2011) IEEE Intl. Conf. on Computer Vision and Pattern Recognition, pp. 1689-1696
dc.descriptionMa, Z., Redmond, R., Tau coefficients for accuracy assessment of classification of remote sensing data (1995) Photogram. Eng. Remote Sens., 61 (4), pp. 439-453
dc.descriptionMahmoudi, F., Shanbehzadeh, J., Eftekhari-Moghadam, A.-M., Soltanian-Zadeh, H., Image retrieval based on shape similarity by edge orientation autocorrelogram (2003) Pattern Recognition, 36 (8), pp. 1725-1736. , DOI 10.1016/S0031-3203(03)00010-4
dc.descriptionMansano, V., Matsuoka, J.A., Afonso, L.C.S., Papa, J.P., Faria, F., Torres, R., Da, S., Improving image classification through descriptor combination (2012) Conf. on Graphics, Patterns and Images, pp. 324-329
dc.descriptionMorais, E., Goldenstein, S., Ferreira, A., Rocha, A., Automatic tracking of indoor soccer players using videos from multiple cameras (2012) Conf. on Graphics, Patterns and Images, pp. 174-181
dc.descriptionNakamura, E.F., Loureiro, A.A.F., Frery, A.C., Information fusion for wireless sensor networks: Methods, models, and classifications (2007) ACM Comput Surv., 39 (3)
dc.descriptionOza, N.C., Tumer, K., Classifier ensembles: Select real-world applications (2008) Information Fusion, 9 (1), pp. 4-20. , DOI 10.1016/j.inffus.2007.07.002, PII S1566253507000620, Applications of Ensemble Methods
dc.descriptionPasserini, A., Pontil, M., Frasconi, P., New results on error correcting output codes of kernel machines (2004) IEEE Trans. Neural Networks, 15 (1), pp. 45-54
dc.descriptionPass, G., Zabih, R., Miller, J., Comparing images using color coherence vectors (1996) ACM Multimedia, pp. 65-73
dc.descriptionPedronette, D.C.G., Torres, R., Da, S., Exploiting contextual spaces for image re-ranking and rank aggregation (2011) ACM Int. Conf. on Multimedia Retrieval, pp. 131-138
dc.descriptionPedronette, D.C.G., Torres, R., Da, S., Image re-ranking and rank aggregation based on similarity of ranked lists (2011) Int. Conf. on Computer Analysis of Images and Patterns - Volume Part i, pp. 369-376
dc.descriptionPenatti, O.A.B., Valle, E., Torres, R.D.S., Comparative study of global color and texture descriptors for web image retrieval (2012) J. Visual Commun. Image Represent., 23 (2), pp. 359-380
dc.descriptionPerrone, M.P., Cooper, L.N., (1993) When Networks Disagree: Ensemble Methods for Hybrid Neural Networks, , Chapman and Hall
dc.descriptionRamos, C.C.O., Souza, A.N., Chiachia, G., Falcão, A.X., Papa, J.P., A novel algorithm for feature selection using Harmony search and its application for non-technical losses detection (2011) Comput. Electric. Eng., 37 (6), pp. 886-894
dc.descriptionRocha, A., Hauagge, D.C., Wainer, J., Goldenstein, S., Automatic fruit and vegetable classification from images (2010) Elsevier Comput. Electron. Agric., 70 (1), pp. 96-104
dc.descriptionRocha, A., Papa, J.P., Meira, L.A.A., How far do we get using machine learning black-boxes (2012) Int. J. Pattern Recogn. Artif. Intell., 26 (2), pp. 12610011-126100123
dc.descriptionRokach, L., Ensemble-based classifiers (2010) J. Artif. Intell. Rev., 33 (12), pp. 1-39
dc.descriptionRoss, A.A., Nandakumar, K., Jain, A.K., (2006) Handbook of Multibiometrics (Int. Series on Biometrics), , Springer-Verlag New York, Inc., Secaucus, NJ, USA 0387222960
dc.descriptionSchapire, R.E., A Brief Introduction to Boosting (1999) Int. Joint Conf. on Artificial Intelligence, pp. 1401-1406
dc.descriptionSegata, N., Blanzieri, E., Fast and scalable local kernel machines (2010) J. Mach. Learn. Res., 99, pp. 1883-1926
dc.descriptionShipp, C.A., Kuncheva, L.I., An investigation into how AdaBoost affects classifier diversity (2009) IPMU, pp. 203-208. , http://hdl.handle.net/10242/41889
dc.descriptionStehling, R., Nascimento, M., Falcão, A.X., A compact and efficient image retrieval approach based on border/interior pixel classification (2002) Int. Conf. on Information and Knowledge Management, pp. 102-109
dc.descriptionSun, Y., Todorovic, S., Li, J., Reducing the overfitting of adaboost by controlling its data distribution skewness (2006) International Journal of Pattern Recognition and Artificial Intelligence, 20 (7), pp. 1093-1116. , DOI 10.1142/S0218001406005137, PII S0218001406005137
dc.descriptionSun, B., Luo, J., Shu, S., Yu, N., Introduce randomness into AdaBoost for robust performance on noisy data (2010) Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh International Conference on, 4, pp. 1858-1861
dc.descriptionSuzuki, C.T.N., Gomes, J.F., Falcão, A.X., Papa, J.P., Shimizu, S.H., Automatic segmentation and classification of human intestinal parasites from microscopy images (2012) IEEE Trans. Biomed. Eng., 60 (3), pp. 803-812
dc.descriptionSwain Michael, J., Ballard Dana, H., Color indexing (1991) International Journal of Computer Vision, 7 (1), pp. 11-32
dc.descriptionTao, B., Dickinson, B., Texture recognition and image retrieval using gradient indexing (2000) J. Visual Commun. Image Represent., 11 (3), pp. 327-342
dc.descriptionUnser Michael, Sum and difference histograms for texture classification (1986) IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (1), pp. 118-125
dc.descriptionViola, P., Jones, M., Rapid object detection using a boosted cascade of simple features (2001) IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 511-518
dc.descriptionWeber, R., Schek, H.-J., Blott, S., A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces (1998) Proceedings of the International Conference on Very Large Data Bases, pp. 194-205
dc.descriptionXia, X., O'Gorman, L., Innovations in fingerprint capture devices (2002) Pattern Recognition, 36 (2), pp. 361-369. , DOI 10.1016/S0031-3203(02)00036-5, PII S0031320302000365
dc.descriptionXiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A., SUN database: Large-scale scene recognition from abbey to zoo (2010) IEEE Intl. Conf. on Computer Vision and Pattern Recognition, pp. 3485-3492
dc.descriptionZegarra, J., Leite, N., Torres, R.D.S., Wavelet-based feature extraction for fingerprint image retrieval (2008) J. Comput. Appl. Math., 227 (2), pp. 294-307
dc.descriptionZhou, W., Huang, G., Troy, A., Cadenasso, M.L., Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study (2009) Remote Sens. Environ., 113, pp. 1769-1777
dc.languageen
dc.publisher
dc.relationPattern Recognition Letters
dc.rightsfechado
dc.sourceScopus
dc.titleA Framework For Selection And Fusion Of Pattern Classifiers In Multimedia Recognition
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución