dc.creatorAguiar V.S.
dc.creatorBottoli C.B.G.
dc.date2015
dc.date2015-06-25T12:52:30Z
dc.date2015-11-26T15:04:37Z
dc.date2015-06-25T12:52:30Z
dc.date2015-11-26T15:04:37Z
dc.date.accessioned2018-03-28T22:15:26Z
dc.date.available2018-03-28T22:15:26Z
dc.identifier
dc.identifierInstrumentation Science And Technology. Taylor And Francis Inc., v. 43, n. 2, p. 139 - 155, 2015.
dc.identifier10739149
dc.identifier10.1080/10739149.2014.954126
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921517842&partnerID=40&md5=784327460f3ee8cca500249f834ed3c3
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85392
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85392
dc.identifier2-s2.0-84921517842
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256887
dc.descriptionOctadecyl methacrylate-based monolithic capillary columns were prepared using octadecyl methacrylate as the monomer, ethylene dimethacrylate as the cross-linking agent, 2-acryloylamido-2-methylpropanesulfonic acid as the ionizable monomer, responsible for a negatively charged stationary phase surface and able to support a cathodic electrosmotic flow, and amyl alcohol and 1,4-butanediol as porogenic solvents. The repeatability of the morphological aspect of the monolithic material was evaluated by scanning electron microscopy (SEM). The uniformity along the same monolithic bed was also investigated by SEM. Replicate determinations of surface area and pore volume were also performed and compared. The repeatability of the obtained electrochromatographic efficiencies for separations of alkylbenzenes using the stationary phases prepared was also evaluated. A column that had a plate height of 31 μm was tested for separation of polycyclic aromatic hydrocarbons. Even though minimal possible variation of experimental parameters was maintained, it was not possible to reproduce the stationary phases of the monolithic columns, since the relative standard deviation for the efficiencies obtained on columns prepared from the same polymerization mixture composition was 62%. The lack of repeatability for the efficiency is thought to be a result of limited homogeneity of the monolithic globular structures along the length of the majority of the prepared columns. The poor precision of preparation was justified by the copolymerization reaction that occurs in the presence of 2, 2′-azobisisobutyronitrile as the initiator agent, whose decomposition starts at the moment that this is added to the reaction mixture.
dc.description43
dc.description2
dc.description139
dc.description155
dc.descriptionTang, Q., Lee, M.L., Column Technology for Capillary Electrochromatography (2000) Trends Anal. Chem., 19, pp. 648-663
dc.descriptionEeltink, S., Kok, W.Th., Recent Applications in Capillary Electrochromatography (2006) Electrophoresis, 27, pp. 84-96
dc.descriptionEeltink, S., Svec, F., Fréchet, J.M.J., Open-tubular Capillary Columns with a Porous Layer of Monolithic Polymer for Highly Efficient and Fast Separations in Electrochromatography (2006) Electrophoresis, 27, pp. 4249-4256
dc.descriptionLi, W., Fries, D.P., Malik, A., Sol-Gel Stationary Phases for Electrochromatography (2004) J. Chromatogr. A, 1044, pp. 23-52
dc.descriptionZajickova, Z., Luna, J., Svec, F., Surface Modification of Silica-based Monolith with Poly(pentafluoropropyl methacrylate) Using Single Step Photografting (2010) J. Liq. Chromatogr. Relat. Technol., 33, pp. 1640-1648
dc.descriptionPlaneta, J., Moravcová, D., Roth, M., Karásek, P., Kahle, V., Silica-based Monolithic Capillary Columns - Effect of Preparation Temperature on Separation Efficiency (2010) J. Chromatogr. A, 1217, pp. 5737-5740
dc.descriptionBernabé-Zafón, V., Cantó-Mirapeix, A., Simó-Alfonso, E.F., Ramis-Ramos, G., Herrero-Martínez, J.M., Comparison of Thermal and Photo Polymerization of Lauryl Methacrylate Monolithic Columns for CEC (2009) Electrophoresis, 30, pp. 1929-1936
dc.descriptionKositarat, S., Smith, N.W., Nacapricha, D., Wilairat, P., Chaisuwan, P., Repeatability in Column Preparation of a Reversed-phase C18 Monolith and its Application to Separation of Tocopherol Homologues (2011) Talanta, 84, pp. 1374-1378
dc.descriptionNischang, I., Teasdale, I., Brüggemann, O., Towards Porous Polymer Monoliths for the Efficient, Retention-independent Performance in the Isocratic Separation of Small Molecules by Means of Nano-liquid Chromatography (2010) J. Chromatogr. A, 1217, pp. 7514-7522
dc.descriptionLudewig, R., Nietzsche, S., Scriba, G.K.E., A Weak Cation-exchange Monolith as Stationary Phase for the Separation of Peptide Diastereomers by CEC (2011) J. Sep. Sci., 34, pp. 64-69
dc.descriptionYamada, H., Kitagawa, S., Ohtani, H., Simultaneous Separation of Water- and Fat-soluble Vitamins in Isocratic Pressure-assisted Capillary Electrochromatography Using a Methacrylate-based Monolithic Column (2013) J. Sep. Sci., 36, pp. 1980-1985
dc.descriptionGeiser, L., Eeltink, S., Svec, F., Fréchet, J.M.J., Stability and Repeatability of Capillary Columns Based on Porous Monoliths of Poly(butyl methacrylate-co-ethylene dimethacrylate) (2007) J. Chromatogr. A, 1140, pp. 140-146
dc.descriptionNischang, I., Svec, F., Fréchet, J.M.J., Effect of Capillary Cross-section Geometry and Size on the Separation of Proteins in Gradient Mode Using Monolithic Poly(butyl methacrylate-co-ethylene dimethacrylate) Columns (2009) J. Chromatogr. A, 1216, pp. 2355-2361
dc.descriptionDeyl, Z., Svec, F., (2001) Capillary Electrochromatography, , Elsevier Science B.V.: Berkeley, CA
dc.descriptionSmith, N.W., Jiang, Z., Developments in the Use and Fabrication of Organic Monolithic Phases for Use with High-performance Liquid Chromatography and Capillary Electrochromatography (2008) J. Chromatogr. A, 1184, pp. 416-440
dc.descriptionSvec, F., Recent Developments in the Field of Monolithic Stationary Phases for Capillary Electrochromatography (2005) J. Sep. Sci., 28, pp. 729-745
dc.descriptionUrban, J., Svec, F., Fréchet, J.M.J., Hypercrosslinking: New Approach to Porous Polymer Monolithic Capillary Columns of Large Surface Area for the Highly Efficient Separation of Small Molecules (2010) J. Chromatogr. A, 1217, pp. 8212-8221
dc.descriptionLubbad, S.H., Buchmeiser, M.R., Fast Separation of Low Molecular Weight Analytes on Structurally Optimized Polymeric Capillary Monoliths (2010) J. Chromatogr. A, 1217, pp. 3223-3230
dc.descriptionMohr, J.H., Swart, R., Huber, C.G., Morphology and Efficiency of Poly(styrene-co-divinylbenzene)-based Monolithic Capillary Columns for the Separation of Small and Large Molecules (2011) Anal. Bioanal. Chem., 400, pp. 2391-2402
dc.descriptionUmemura, T., Ueki, Y., Tsunoda, K., Katakai, A., Tamada, M., Haraguchi, H., Preparation and Characterization of Methacrylate-based Semi-micro Monoliths for High-throughput Bioanalysis (2006) Anal. Bioanal. Chem., 386, pp. 566-571
dc.descriptionEeltink, S., Rozing, G.P., Schoenmakers, P.J., Kok, W.Th., Practical Aspects of Using Methacrylate-esterbased Monolithic Columns in Capillary Electrochromatography (2006) J. Chromatogr. A, 1109, pp. 74-79
dc.descriptionEeltink, S., Geiser, L., Svec, F., Fréchet, J.M.J., Optimization of the Porous Structure and Polarity of Polymethacrylate-based Monolithic Capillary Columns for the LC-MS Separation of Enzymatic Digests (2007) J. Sep. Sci., 30, pp. 2814-2820
dc.descriptionWieder, W., Lubbad, S.H., Trojer, L., Bisjak, C.P., Bonn, G.K., Novel Monolithic Poly(p-methacrylate-co-bis(p-vinylbenzyl)dimethylsilane) Capillary Columns for Biopolymer Separation (2008) J. Chromatogr. A, 1191, pp. 253-262
dc.descriptionAguiar, V.S., Bottoli, C.B.G., Development and Characterization of Hydrophobic Organic Monolithic Columns for Use in Capillary Electrochromatography (2013) Microchem. J., 109, pp. 51-57
dc.descriptionCourtois, J., Szumski, M., Georgsson, F., Irgum, K., Assessing the Macroporous Structure of Monolithic Columns by Transmission Electron Microscopy (2007) Anal. Chem., 79, pp. 335-344
dc.descriptionBuszewski, B., Szumski, M., Study of Bed Homogeneity of Methacrylate-based Monolithic Columns for Micro-HPLC and CEC (2004) Chromatographia Supplement, 60, pp. S261-S267
dc.descriptionSvec, F., Peters, E.C., Sýkora, D., Fréchet, J.M.J., Design of the Monolithic Polymers Used in Capillary Electrochromatography Columns (2000) J. Chromatogr. A, 887, pp. 3-29
dc.descriptionHilder, E.F., Svec, F., Fréchet, J.M.J., Polymeric Monolithic Stationary Phases for Capillary Electrochromatography (2002) Electrophoresis, 23, pp. 3934-3953
dc.descriptionXu, G., Nambiar, R.R., Blum, F.D., Room-temperature Decomposition of 2,2′-azobis(isobutyronitrile) in Emulsion Gels with and without Silica (2006) J. Colloid Interface Sci., 302, pp. 658-661
dc.descriptionNischang, I., Teasdale, I., Brüggemann, O., Porous Polymer Monoliths for Small Molecule Separations: Advancements and Limitations (2011) Anal. Bioanal. Chem., 400, pp. 2289-2304
dc.languageen
dc.publisherTaylor and Francis Inc.
dc.relationInstrumentation Science and Technology
dc.rightsfechado
dc.sourceScopus
dc.titleRepeatability Of Octadecyl Methacrylate-based Monolithic Columns For Capillary Electrochromatography
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución