dc.creatorFreitas J.A.
dc.creatorKoshlukov P.
dc.creatorKrasilnikov A.
dc.date2015
dc.date2015-06-25T12:52:28Z
dc.date2015-11-26T15:04:08Z
dc.date2015-06-25T12:52:28Z
dc.date2015-11-26T15:04:08Z
dc.date.accessioned2018-03-28T22:14:58Z
dc.date.available2018-03-28T22:14:58Z
dc.identifier
dc.identifierJournal Of Algebra. Academic Press Inc., v. 427, n. , p. 226 - 251, 2015.
dc.identifier218693
dc.identifier10.1016/j.jalgebra.2014.12.023
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921277230&partnerID=40&md5=e4145b9b1fc4e7709a7317da754f3868
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85384
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85384
dc.identifier2-s2.0-84921277230
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256776
dc.descriptionLet K be a field of characteristic 0 and let W1 be the Lie algebra of the derivations of the polynomial ring K[t]. The algebra W1 admits a natural Z-grading. We describe the graded identities of W1 for this grading. It turns out that all these Z-graded identities are consequences of a collection of polynomials of degree 1, 2 and 3 and that they do not admit a finite basis. Recall that the "ordinary" (non-graded) identities of W1 coincide with the identities of the Lie algebra of the vector fields on the line and it is a long-standing open problem to find a basis for these identities. We hope that our paper might be a step to solving this problem.
dc.description427
dc.description
dc.description226
dc.description251
dc.descriptionBahturin, Y., (1987) Identical Relations in Lie Algebras, , first English ed., VNU Science Press BV, Utrecht
dc.descriptionBahturin, Y., Kochetov, M., Classification of group gradings on simple Lie algebras of types A, B, C and D (2010) J. Algebra, 324, pp. 2971-2989
dc.descriptionBahturin, Y., Zaicev, M., Graded algebras and graded identities (2003) Lect. Notes Pure Appl. Math., 235, pp. 101-139. , M. Dekker, Polynomial Identities and Combinatorial Methods
dc.descriptionElduque, A., Kochetov, M., Gradings on Simple Lie Algebras (2013) Math. Surveys Monogr., 189. , Amer. Math. Soc., Providence, RI, Atlantic Association for Research in the Math. Sciences (AARMS), Halifax, NS
dc.descriptionGiambruno, A., Souza, M.S., Graded polynomial identities and Specht property of the Lie algebra sl2 (2013) J. Algebra, 389, pp. 6-22
dc.descriptionGiambruno, A., Souza, M.S., Minimal varieties of graded Lie algebras of exponential growth and the special Lie algebra sl2 (2014) J. Pure Appl. Algebra, 218, pp. 1517-1527
dc.descriptionGiambruno, A., Zaicev, M., Polynomial Identities and Asymptotic Methods (2005) Math. Surveys Monogr., 122. , Amer. Math. Soc., Providence, RI
dc.descriptionKanel-Belov, A., Rowen, L., Computational Aspects of Polynomial Identities (2005) Res. Notes Math., 9. , A. K. Peters, Ltd., Wellesley, MA
dc.descriptionKemer, A., Ideals of Identities of Associative Algebras (1991) Transl. Math. Monogr., 87. , Amer. Math. Soc., Providence, RI
dc.descriptionKoshlukov, P., Graded polynomial identities for the Lie algebra sl2(K) (2008) Internat. J. Algebra Comput., 18, pp. 825-836
dc.descriptionKoshlukov, P., Krasilnikov, A., Silva, D.D.P., Graded identities for Lie algebras (2009) Contemp. Math., 499, pp. 181-188. , Amer. Math. Soc
dc.descriptionKoshlukov, P., Krasilnikov, A., Just nonfinitely based varieties of 2-graded Lie algebras submitted for publicationMishchenko, S.P., Solvable subvarieties of a variety generated by a Witt algebra (1989) Math. USSR Sb., 64, pp. 415-426
dc.descriptionRazmyslov, Y., Identities of Algebras and Their Representations (1994) Transl. Math. Monogr., 138. , Amer. Math. Soc., Providence, RI
dc.descriptionRepin, D.V., Graded identities of a simple three-dimensional Lie algebra (2004) Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., (2), pp. 5-16. , Special Issue (in Russian)
dc.languageen
dc.publisherAcademic Press Inc.
dc.relationJournal of Algebra
dc.rightsfechado
dc.sourceScopus
dc.titleZ-graded Identities Of The Lie Algebra W1
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución