dc.creatorMatos C.F.
dc.creatorGalembeck F.
dc.creatorZarbin A.J.G.
dc.date2014
dc.date2015-06-25T18:02:07Z
dc.date2015-11-26T15:04:04Z
dc.date2015-06-25T18:02:07Z
dc.date2015-11-26T15:04:04Z
dc.date.accessioned2018-03-28T22:14:55Z
dc.date.available2018-03-28T22:14:55Z
dc.identifier
dc.identifierCarbon. Elsevier Ltd, v. 78, n. , p. 469 - 479, 2014.
dc.identifier86223
dc.identifier10.1016/j.carbon.2014.07.028
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84906323517&partnerID=40&md5=87eebe518e12d002d0defbdec3bb3305
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87732
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87732
dc.identifier2-s2.0-84906323517
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256761
dc.descriptionThis work describes a green route to multifunctional nanocomposite materials composed of natural rubber (NR) latex and graphene (rGO) or graphene oxide (GO). Aqueous solutions with different concentrations of GO and rGO (prepared with the surfactant cetyltrimethylammonium bromide - CTAB) were mixed with natural rubber latex under magnetic stirring followed by sonication. The slurries obtained after casting were dried in an oven in air at 70 °C for 24 h. The nanocomposites were characterized by TEM and SEM, AFM and KFM. The thermal, electrical and mechanical properties were evaluated using TGA, resistivity measurements (four-point) and DMA. Swelling tests were performed using three solvents with different polarities: xylene, isopropanol and water. The inclusion of filler networks in the polymeric matrices provided significant improvements in the electrical, chemical and mechanical properties, in comparison to the unfilled polymer. In addition, the nanocomposites proved to be biodegradable. © 2014 Elsevier Ltd. All rights reserved.
dc.description78
dc.description
dc.description469
dc.description479
dc.descriptionChiu, C.W., Huang, T.K., Wang, Y.C., Alamani, B.G., Lin, J.J., Intercalation strategies in clay/polymer hybrids (2014) Prog Polym Sci, 39, pp. 443-485
dc.descriptionHuang, J.C., Carbon black filled conducting polymers and polymer blends (2002) Adv Polym Sci, 21, pp. 299-313
dc.descriptionAl-Saleh, M.H., Sundararaj, U., Review of the mechanical properties of carbon nanofiber/polymer composites (2011) Compos A, 42, pp. 2126-2142
dc.descriptionRahmat, M., Hubert, P., Carbon nanotube-polymer interactions in nanocomposites: A review (2011) Compos Sci Technol, 72, pp. 72-84
dc.descriptionSham, A.Y.W., Notley, S.M., A review of fundamental properties and applications of polymer-graphene hybrid materials (2013) Soft Matter, 9, pp. 6645-6653
dc.descriptionLiu, G., Neoh, K.G., Kang, E.T., Dispersible graphene oxide-polymer nanocomposites (2012) Polym-graphene Nanocompos, 26, p. 179
dc.descriptionWang, Y., Ameer, G.A., Sheppard, B.J., Langer, R., A tough biodegradable elastomer (2002) Nat Biotechnol, 20, pp. 602-606
dc.descriptionDarder, M., Aranda, P., Ferrer, M.L., Gutiérrez, M.C., Del Monte, F., Ruiz-Hitzky, E., Progress in bionanocomposite and bioinspired foams (2011) Adv Mater, 23, pp. 5262-5267
dc.descriptionRippel, M.M., Leite, C.A.P., Galembeck, F., Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy (2002) Anal Chem, 74, pp. 2541-2546
dc.descriptionSadasivuni, K.K., Ponnamma, D., Thomas, S., Grohens, Y., Evolution from graphite to graphene elastomer composites (2013) Prog Polym Sci, , 10.1016/j.progpolymsci.2013.08.003
dc.descriptionSingh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S., Graphene based materials: Past, present and future (2011) Prog Mater Sci, 56, pp. 1178-1271
dc.descriptionVerdejo, R., Bernal, M.M., Romasanta, L.J., Lopez-Manchado, M.A., Graphene filled polymer nanocomposites (2011) J Mater Chem, 21, pp. 3301-3310
dc.descriptionKim, H., Abdala, A.A., Macosko, C.W., Graphene/polymer nanocomposites (2010) Macromolecules, 43, pp. 6515-6530
dc.descriptionKoning, C., Grossiord, N., Hermant, M.C., (2012) Polymer Carbon Nanotube Composites: The Polymer Latex Concept, , Pan Stanford Pub
dc.descriptionTkalya, E., Ghislandi, M., Alekseev, A., Koning, C., Loos, J., Latex-based concept for the preparation of graphene-based polymer nanocomposites (2010) J Mater Chem, 20, pp. 3035-3039
dc.descriptionWu, J., Xing, W., Huang, G., Li, H., Tang, M., Wu, S., (2013) Polymer, 54, pp. 3314-3323
dc.descriptionWu, S., Tang, Z., Guo, B., Zhang, L., Jia, D., Vulcanization kinetics of graphene/natural rubber nanocomposites (2013) RSC Adv, 3, pp. 443-485
dc.descriptionDomingues, S.H., Salvatierra, R.V., Oliveira, M.M., Zarbin, A.J.G., Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization (2011) Chem Commun, 47, pp. 2592-2594
dc.descriptionPark, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat Nanotechnol, 4, pp. 217-224
dc.descriptionRippel, M.M., Lee, L.T., Leite, C.A.P., Galembeck, F., Skim and cream natural rubber particles: Colloidal properties, coalescence and film formation (2003) J Colloid Interface Sci, 268, pp. 330-340
dc.descriptionKim, J., Hong, S., Park, D., Shim, S., Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation (2010) Macromol Res, 18, pp. 558-565
dc.descriptionRippel, M.M., Leite, C.A.P., Lee, L.T., Galembeck, F., Formation of calcium crystallites in dry natural rubber particles (2005) J Colloid Interface Sci, 288, pp. 449-456
dc.descriptionPotts, J.R., Shankar, O., Du, L., Ruoff, R.S., Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites (2012) Macromolecules, 45, pp. 6045-6055
dc.descriptionValadares, L.F., Leite, C.A.P., Galembeck, F., Preparation of natural rubber-montmorillonite nanocomposite in aqueous medium: Evidence for polymer-platelet adhesion (2006) Polymer, 47, pp. 672-678
dc.descriptionCassu, S.N., Felisberti, M.I., Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas (2005) Quim Nova, 28, pp. 255-263
dc.descriptionGeethamma, V., Kalaprasad, G., Groeninckx, G., Thomas, S., Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites (2005) Compos A, 36, pp. 1499-1506
dc.descriptionLópez-Manchado, M.A., Biagiotti, J., Valentini, L., Kenny, J.M., Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber (2004) J Appl Polym Sci, 92, pp. 3394-3400
dc.descriptionRobertson, C.G., Rackaitis, M., Further consideration of viscoelastic two glass transition behavior of nanoparticle-filled polymers (2011) Macromolecules, 44, pp. 1177-1181
dc.descriptionLi, S.D., Yu, H.P., Peng, Z., Zhu, C.S., Li, P.S., Study on thermal degradation of sol and gel of natural rubber (2000) J Appl Polym Sci, 75, pp. 1339-1344
dc.descriptionMenon, A.R.R., Pillai, C.K.S., Nando, G.B., Thermal degradation characteristics of natural rubber vulcanizates modified with phosphorylated cashew nut shell liquid (1996) Polym Degrad Stab, 52, pp. 265-271
dc.descriptionUskoković, V., Drofenik, M., Ban, I., The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1-hexanol/water microemulsion (2004) J Magn Magn Mater, 274, pp. 294-302
dc.descriptionZhan, Y., Lavorgna, M., Buonocore, G., Xia, H., Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing (2012) J Mater Chem, 22, pp. 10464-10468
dc.descriptionBokobza, L., Kolodziej, M., On the use of carbon nanotubes as reinforcing fillers for elastomeric materials (2006) Polym Int, 22, pp. 1090-1098
dc.descriptionBroza, G., Piszczek, K., Schulte, K., Sterzynski, T., Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT) (2007) Compos Sci Technol, 67, pp. 890-894
dc.descriptionBragança, F.C., Valadares, L.F., Leite, C.A.P., Galembeck, F., Counterion effect on the morphological and mechanical properties of polymer-clay nanocomposites prepared in an aqueous medium (2007) Chem Mater, 19, pp. 3334-3342
dc.descriptionScherillo, G., Lavorgna, M., Buonocore, G.G., Zhan, Y.H., Xia, H.S., Mensitieri, G., Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites (2014) ACS Appl Mater Interfaces, 6, pp. 2230-2234
dc.descriptionWu, J., Huang, G., Li, H., Wu, S., Liu, Y., Zheng, J., Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content (2013) Polymer, 54, pp. 1930-1937
dc.descriptionMatos, C.F., Galembeck, F., Zarbin, A.J.G., Multifunctional materials based on iron/iron oxide-filled carbon nanotubes/natural rubber composites (2012) Carbon, 50, pp. 4685-4695
dc.descriptionAkhavan, O., Ghaderi, E., Toxicity of graphene and graphene oxide nanowalls against bacteria (2010) ACS Nano, 4, pp. 5731-5736
dc.descriptionSaito, R., Hofmann, M., Dresselhaus, G., Jorio, A., Dresselhaus, M.S., Raman spectroscopy of graphene and carbon nanotubes (2011) Adv Phys, 60, pp. 413-550
dc.languageen
dc.publisherElsevier Ltd
dc.relationCarbon
dc.rightsfechado
dc.sourceScopus
dc.titleMultifunctional And Environmentally Friendly Nanocomposites Between Natural Rubber And Graphene Or Graphene Oxide
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución