dc.creator | Matos C.F. | |
dc.creator | Galembeck F. | |
dc.creator | Zarbin A.J.G. | |
dc.date | 2014 | |
dc.date | 2015-06-25T18:02:07Z | |
dc.date | 2015-11-26T15:04:04Z | |
dc.date | 2015-06-25T18:02:07Z | |
dc.date | 2015-11-26T15:04:04Z | |
dc.date.accessioned | 2018-03-28T22:14:55Z | |
dc.date.available | 2018-03-28T22:14:55Z | |
dc.identifier | | |
dc.identifier | Carbon. Elsevier Ltd, v. 78, n. , p. 469 - 479, 2014. | |
dc.identifier | 86223 | |
dc.identifier | 10.1016/j.carbon.2014.07.028 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84906323517&partnerID=40&md5=87eebe518e12d002d0defbdec3bb3305 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/87732 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/87732 | |
dc.identifier | 2-s2.0-84906323517 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1256761 | |
dc.description | This work describes a green route to multifunctional nanocomposite materials composed of natural rubber (NR) latex and graphene (rGO) or graphene oxide (GO). Aqueous solutions with different concentrations of GO and rGO (prepared with the surfactant cetyltrimethylammonium bromide - CTAB) were mixed with natural rubber latex under magnetic stirring followed by sonication. The slurries obtained after casting were dried in an oven in air at 70 °C for 24 h. The nanocomposites were characterized by TEM and SEM, AFM and KFM. The thermal, electrical and mechanical properties were evaluated using TGA, resistivity measurements (four-point) and DMA. Swelling tests were performed using three solvents with different polarities: xylene, isopropanol and water. The inclusion of filler networks in the polymeric matrices provided significant improvements in the electrical, chemical and mechanical properties, in comparison to the unfilled polymer. In addition, the nanocomposites proved to be biodegradable. © 2014 Elsevier Ltd. All rights reserved. | |
dc.description | 78 | |
dc.description | | |
dc.description | 469 | |
dc.description | 479 | |
dc.description | Chiu, C.W., Huang, T.K., Wang, Y.C., Alamani, B.G., Lin, J.J., Intercalation strategies in clay/polymer hybrids (2014) Prog Polym Sci, 39, pp. 443-485 | |
dc.description | Huang, J.C., Carbon black filled conducting polymers and polymer blends (2002) Adv Polym Sci, 21, pp. 299-313 | |
dc.description | Al-Saleh, M.H., Sundararaj, U., Review of the mechanical properties of carbon nanofiber/polymer composites (2011) Compos A, 42, pp. 2126-2142 | |
dc.description | Rahmat, M., Hubert, P., Carbon nanotube-polymer interactions in nanocomposites: A review (2011) Compos Sci Technol, 72, pp. 72-84 | |
dc.description | Sham, A.Y.W., Notley, S.M., A review of fundamental properties and applications of polymer-graphene hybrid materials (2013) Soft Matter, 9, pp. 6645-6653 | |
dc.description | Liu, G., Neoh, K.G., Kang, E.T., Dispersible graphene oxide-polymer nanocomposites (2012) Polym-graphene Nanocompos, 26, p. 179 | |
dc.description | Wang, Y., Ameer, G.A., Sheppard, B.J., Langer, R., A tough biodegradable elastomer (2002) Nat Biotechnol, 20, pp. 602-606 | |
dc.description | Darder, M., Aranda, P., Ferrer, M.L., Gutiérrez, M.C., Del Monte, F., Ruiz-Hitzky, E., Progress in bionanocomposite and bioinspired foams (2011) Adv Mater, 23, pp. 5262-5267 | |
dc.description | Rippel, M.M., Leite, C.A.P., Galembeck, F., Elemental mapping in natural rubber latex films by electron energy loss spectroscopy associated with transmission electron microscopy (2002) Anal Chem, 74, pp. 2541-2546 | |
dc.description | Sadasivuni, K.K., Ponnamma, D., Thomas, S., Grohens, Y., Evolution from graphite to graphene elastomer composites (2013) Prog Polym Sci, , 10.1016/j.progpolymsci.2013.08.003 | |
dc.description | Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S.I., Seal, S., Graphene based materials: Past, present and future (2011) Prog Mater Sci, 56, pp. 1178-1271 | |
dc.description | Verdejo, R., Bernal, M.M., Romasanta, L.J., Lopez-Manchado, M.A., Graphene filled polymer nanocomposites (2011) J Mater Chem, 21, pp. 3301-3310 | |
dc.description | Kim, H., Abdala, A.A., Macosko, C.W., Graphene/polymer nanocomposites (2010) Macromolecules, 43, pp. 6515-6530 | |
dc.description | Koning, C., Grossiord, N., Hermant, M.C., (2012) Polymer Carbon Nanotube Composites: The Polymer Latex Concept, , Pan Stanford Pub | |
dc.description | Tkalya, E., Ghislandi, M., Alekseev, A., Koning, C., Loos, J., Latex-based concept for the preparation of graphene-based polymer nanocomposites (2010) J Mater Chem, 20, pp. 3035-3039 | |
dc.description | Wu, J., Xing, W., Huang, G., Li, H., Tang, M., Wu, S., (2013) Polymer, 54, pp. 3314-3323 | |
dc.description | Wu, S., Tang, Z., Guo, B., Zhang, L., Jia, D., Vulcanization kinetics of graphene/natural rubber nanocomposites (2013) RSC Adv, 3, pp. 443-485 | |
dc.description | Domingues, S.H., Salvatierra, R.V., Oliveira, M.M., Zarbin, A.J.G., Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization (2011) Chem Commun, 47, pp. 2592-2594 | |
dc.description | Park, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat Nanotechnol, 4, pp. 217-224 | |
dc.description | Rippel, M.M., Lee, L.T., Leite, C.A.P., Galembeck, F., Skim and cream natural rubber particles: Colloidal properties, coalescence and film formation (2003) J Colloid Interface Sci, 268, pp. 330-340 | |
dc.description | Kim, J., Hong, S., Park, D., Shim, S., Water-borne graphene-derived conductive SBR prepared by latex heterocoagulation (2010) Macromol Res, 18, pp. 558-565 | |
dc.description | Rippel, M.M., Leite, C.A.P., Lee, L.T., Galembeck, F., Formation of calcium crystallites in dry natural rubber particles (2005) J Colloid Interface Sci, 288, pp. 449-456 | |
dc.description | Potts, J.R., Shankar, O., Du, L., Ruoff, R.S., Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites (2012) Macromolecules, 45, pp. 6045-6055 | |
dc.description | Valadares, L.F., Leite, C.A.P., Galembeck, F., Preparation of natural rubber-montmorillonite nanocomposite in aqueous medium: Evidence for polymer-platelet adhesion (2006) Polymer, 47, pp. 672-678 | |
dc.description | Cassu, S.N., Felisberti, M.I., Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas (2005) Quim Nova, 28, pp. 255-263 | |
dc.description | Geethamma, V., Kalaprasad, G., Groeninckx, G., Thomas, S., Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites (2005) Compos A, 36, pp. 1499-1506 | |
dc.description | López-Manchado, M.A., Biagiotti, J., Valentini, L., Kenny, J.M., Dynamic mechanical and Raman spectroscopy studies on interaction between single-walled carbon nanotubes and natural rubber (2004) J Appl Polym Sci, 92, pp. 3394-3400 | |
dc.description | Robertson, C.G., Rackaitis, M., Further consideration of viscoelastic two glass transition behavior of nanoparticle-filled polymers (2011) Macromolecules, 44, pp. 1177-1181 | |
dc.description | Li, S.D., Yu, H.P., Peng, Z., Zhu, C.S., Li, P.S., Study on thermal degradation of sol and gel of natural rubber (2000) J Appl Polym Sci, 75, pp. 1339-1344 | |
dc.description | Menon, A.R.R., Pillai, C.K.S., Nando, G.B., Thermal degradation characteristics of natural rubber vulcanizates modified with phosphorylated cashew nut shell liquid (1996) Polym Degrad Stab, 52, pp. 265-271 | |
dc.description | Uskoković, V., Drofenik, M., Ban, I., The characterization of nanosized nickel-zinc ferrites synthesized within reverse micelles of CTAB/1-hexanol/water microemulsion (2004) J Magn Magn Mater, 274, pp. 294-302 | |
dc.description | Zhan, Y., Lavorgna, M., Buonocore, G., Xia, H., Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing (2012) J Mater Chem, 22, pp. 10464-10468 | |
dc.description | Bokobza, L., Kolodziej, M., On the use of carbon nanotubes as reinforcing fillers for elastomeric materials (2006) Polym Int, 22, pp. 1090-1098 | |
dc.description | Broza, G., Piszczek, K., Schulte, K., Sterzynski, T., Nanocomposites of poly(vinyl chloride) with carbon nanotubes (CNT) (2007) Compos Sci Technol, 67, pp. 890-894 | |
dc.description | Bragança, F.C., Valadares, L.F., Leite, C.A.P., Galembeck, F., Counterion effect on the morphological and mechanical properties of polymer-clay nanocomposites prepared in an aqueous medium (2007) Chem Mater, 19, pp. 3334-3342 | |
dc.description | Scherillo, G., Lavorgna, M., Buonocore, G.G., Zhan, Y.H., Xia, H.S., Mensitieri, G., Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites (2014) ACS Appl Mater Interfaces, 6, pp. 2230-2234 | |
dc.description | Wu, J., Huang, G., Li, H., Wu, S., Liu, Y., Zheng, J., Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content (2013) Polymer, 54, pp. 1930-1937 | |
dc.description | Matos, C.F., Galembeck, F., Zarbin, A.J.G., Multifunctional materials based on iron/iron oxide-filled carbon nanotubes/natural rubber composites (2012) Carbon, 50, pp. 4685-4695 | |
dc.description | Akhavan, O., Ghaderi, E., Toxicity of graphene and graphene oxide nanowalls against bacteria (2010) ACS Nano, 4, pp. 5731-5736 | |
dc.description | Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., Dresselhaus, M.S., Raman spectroscopy of graphene and carbon nanotubes (2011) Adv Phys, 60, pp. 413-550 | |
dc.language | en | |
dc.publisher | Elsevier Ltd | |
dc.relation | Carbon | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Multifunctional And Environmentally Friendly Nanocomposites Between Natural Rubber And Graphene Or Graphene Oxide | |
dc.type | Artículos de revistas | |