Artículos de revistas
Analysis Of Metabolic Changes In Plant Pathosystems By Imprint Imaging Desi-ms
Registro en:
Journal Of The American Society For Mass Spectrometry. Springer New York Llc, v. 26, n. 4, p. 641 - 648, 2015.
10440305
10.1007/s13361-014-1039-0
2-s2.0-84924891302
Autor
Tata A.
Perez C.J.
Hamid T.S.
Bayfield M.A.
Ifa D.R.
Institución
Resumen
The response of plants to microbial pathogens is based on the production of secondary metabolites. The complexity of plant-pathogen interactions makes their understanding a challenging task for metabolomic studies requiring powerful analytical approaches. In this paper, the ability of ambient mass spectrometry to provide a snapshot of plant metabolic response to pathogen invasion was tested. The fluctuations of glycoalkaloids present in sprouted potatoes infected by the phytopathogen Pythium ultimum were monitored by imprint imaging desorption electrospray ionization mass spectrometry (DESI-MS). After 8 d from the inoculation, a decrease of the relative abundance of potato glycoalkaloids α-solanine (m/z 706) and α-chaconine (m/z 722) was observed, whereas the relative intensity of solanidine (m/z 398), solasodenone (m/z 412), solanaviol (m/z 430), solasodiene (m/z 396), solaspiralidine (m/z 428), γ-solanine/γ-chaconine (m/z 560), β-solanine (m/z 706), and β-chaconine (m/z 722) increased. The progression of the disease, expressed by the development of brown necrotic lesions on the potato, led to the further decrease of all the glycoalkaloid metabolites. Therefore, the applicability of imprint imaging DESI-MS in studying the plant metabolic changes in a simple pathosystem was demonstrated with minimal sample preparation. 26 4 641 648 Freeman, B.C., Beattie, G.A., The plant health instructor (2008) Am. Phytopathol. Soc. St. Paul. Gunatilaka, L.A., Natural products from plant-associated microorganisms: Distribution, structural diversity, bioactivity, and implications of their occurrence (2006) J. Nat. Prod., 69, pp. 509-526. , 1:CAS:528:DC%2BD28Xit1Wmt7o%3D López-Gresa, M.P., Maltese, F., Bellés, J.M., Conejero, V., Kim, H.K., Metabolic response of tomato leaves upon different plant-pathogen interactions (2010) Phytochem. Anal., 21, pp. 89-94 Sana, T.R., Fischer, S., Wohlgemuth, G., Katrekar, A., Jung, K., Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonasoryzae pv oryzae (2010) Metabolomics, 6, pp. 451-465. , 1:CAS:528:DC%2BC3cXosV2ru70%3D Cho, K., Kim, Y., Wi, S.J., Seo, J.B., Kwon, J., Chung, J.H., Park, K.Y., Nam, M.H., Nontargeted metabolite profiling in compatible pathogen-inoculated tobacco (Nicotiana tabacum L cv Wisconsin 38) using UPLC-Q-TOF/MS (2012) J. Agric. Food Chem., 60 (44), pp. 11015-11028 Pushpa, D., Yogendra, K.N., Gunnaiah, R., Kushalappa, A.C., Murphey, A., Identification of late blight resistance related metabolites and genes in potato through nontargeted metabolomics (2014) Plant Mol. Biol. Rep., 32, pp. 584-595. , 1:CAS:528:DC%2BC2cXivF2jsLY%3D Aliferis, K.A., FT-ICR/MS and GC-EI/MS metabolomics networking unravels global potato sprout's responses to Rhizoctonia solani infection (2012) PLoS One, 7, p. e42576 Simon, C., Langlois-Meurinne, L., Bellvert Garmier, M., Didierlaurent, L., Massoud, K., Chaouch, S., Marie, A., Saindrenan, G., The differential spatial distribution of secondary metabolites in Arabidopsis leaves reacting hypersensitively to Pseudomonas syringae pv tomato is dependent on the oxidative burst (2010) J. Exp. Bot., 61 (12), pp. 3355-33570. , 1:CAS:528:DC%2BC3cXptVymsbs%3D Whipps, J.M., Lumsden, R.D., Biological control of Pythium species (1991) BioSci. Technol., 1, pp. 75-90 Wu, C., Dill, A.L., Eberlin, L.S., Cooks, R.G., Ifa, D.R., Mass spectrometry imaging under ambient conditions (2013) Mass Spectrom. Rev., 32, pp. 218-243. , 1:CAS:528:DC%2BC3sXlvFWguro%3D Monge, M.E., Harris, G.A., Dwivedi, P., Fernández, F.M., Mass spectrometry: Recent advances in direct open air surface sampling/ionization (2013) Chem. Rev., 113, pp. 2269-2308. , 1:CAS:528:DC%2BC3sXms1Oksg%3D%3D Wu, C., Ifa, D.R., Manicke, N.E., Cooks, R.G., Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization (2010) Analyst, 135, pp. 28-32. , 1:CAS:528:DC%2BD1MXhsFClt7fF Jackson, A.U., Tata, A., Wu, C., Perry, R.H., Haas, G., West, L., Cooks, R.G., Direct analysis of Stevia leaves for diterpene glycosides by desorption electrospray ionization mass spectrometry (2009) Analyst, 134, pp. 867-874. , 1:CAS:528:DC%2BD1MXkslartrY%3D Nemes, P., Vertes, A., Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry (2007) Anal. Chem., 79, pp. 8098-8106. , 1:CAS:528:DC%2BD2sXhtVyjtb%2FK Ifa, D.R., Srimany, A., Eberlin, L.S., Naik, H.R., Bhat, V., Cooks, R.G., Pradeep, T., Tissue imprint imaging by desorption electrospray ionization mass spectrometry (2011) Anal. Methods, 3, pp. 1910-1912. , 1:CAS:528:DC%2BC3MXhtFKqsbfO Tata, A., Fernandes, A.M., Santos, V.G., Alberici, R.M., Araldi, D., Parada, C.A., Braguini, W., Eberlin, M.N., Nano-assisted laser desorption-ionization-MS imaging of tumors (2012) Anal. Chem., 84, pp. 6341-6345 Tata, A., Montemurro, C., Porcari, M.A., Silva, K.C., Lopes De Faria, J.B., Eberlin, M.N., Spatial distribution of theobromine-a low MW drug-in tissues via matrix-free NALDI-MS imaging (2014) Drug Test Anal., 6, pp. 949-952. , 1:CAS:528:DC%2BC2cXht1Wkt7zN Caprioli, R.M., Farmer, T.B., Gile, J., Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS (1997) Anal. Chem., 69, pp. 4751-4760. , 1:CAS:528:DyaK2sXntVagtLc%3D Masumori, N., Thomas, T.Z., Chaurand, P., Case, T., Paul, M., Kasper, S., Caprioli, R.M., Matusik, R.J., A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential (2001) Cancer Res., 61, pp. 2239-2249. , 1:CAS:528:DC%2BD3MXit1OgtrY%3D Cabral, C.E., Mirabelli, M.F., Perez, C.J., Ifa, D.R., Blotting assisted by heating and solvent extraction for DESI-MS Imaging (2013) J. Am. Soc. Mass Spectrom., 24, pp. 956-965. , 1:CAS:528:DC%2BC3sXnsVWmsrc%3D Hemalatha, R.G., Pradeep, T., Understanding the molecular signatures in leaves and flowers by desorption electrospray ionization mass spectrometry (DESI-MS) imaging (2013) J. Agric. Food Chem., 61, pp. 7477-7487. , 1:CAS:528:DC%2BC3sXhtVyrt7bF Manicke, N.E., Kistler, T., Ifa, D.R., Cooks, R.G., Ouyang, Z., High-throughput quantitative analysis by desorption electrospray ionization mass spectrometry (2009) J. Am. Soc. Mass Spectrom., 20, pp. 321-325. , 1:CAS:528:DC%2BD1MXhtFyqtr4%3D Machado, R.M.D., Toledo, M.C.F., Garcia, L.C., Effect of light and temperature on the formation of glycoalkaloids in potato tubers (2007) Food Control, 18, pp. 503-508. , 1:CAS:528:DC%2BD28XhtFSrur%2FJ Nema, P.K., Ramayya, N., Duncan, E., Niranjan, K., Potato glycoalkaloids: Formation and strategies for mitigation (2008) J. Sci. Food Agric., 88, pp. 1869-1881. , 1:CAS:528:DC%2BD1cXhtVehurvJ Friedman, M., Dao, L., Distribution of glycoalkaloids in potato plants and commercial potato products (1992) J. Anal. Food Chem., 40, pp. 419-423. , 1:CAS:528:DyaK38Xht1Ohu7g%3D Ha, M., Kwak, J.H., Kim, Y., Zee, O.P., Direct analysis for the distribution of toxic glycoalkaloids in potato tuber tissue using matrix-assisted laser desorption/ionization mass spectrometric imaging (2012) Food Chem., 133, pp. 1155-1162. , 1:CAS:528:DC%2BC38XlsFyntL8%3D Caldwell, K.A., Grosjean, O.K., Henika, P.A., Friedman, M., Hepatic ornithine decarboxylase induction by potato glycoalkaloids in rats (1991) Food Chem. Toxicol., 29, pp. 531-535. , 1:CAS:528:DyaK3MXmsV2rtrk%3D Friedman, M., Rayburn, J.R., Bantle, J.A., Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay-Xenopus (FETAX) (1991) Food Chem. Toxicol., 29, pp. 537-547. , 1:CAS:528:DyaK3MXmsFSju7s%3D Cahill, M.G., Caprioli, G., Vittori, S., James, K.J., Elucidation of the mass fragmentation pathways of potato glycoalkaloids and aglycons using Orbitrap mass spectrometry (2010) J. Mass Spectrom., 45, pp. 1019-1025. , 1:CAS:528:DC%2BC3cXhtF2msbrJ Rokka, V.M., Laurila, J., Tauriainen, A., Laakso, I., Larkka, J., Metzler, M., Pietilä, L., Glycoalkaloid aglycone accumulations associated with infection by Clavibacter michiganensis ssp sepedonicus in potato species Solanumacaule and Solanumtuberosum and their interspecific somatic hybrids (2005) Plant Cell Rep., 23, pp. 683-691. , 1:CAS:528:DC%2BD2MXitVaht74%3D Kuć, J.A., Metabolites accumulating in potato tubers following infection and stress (1973) Teratology, 8, pp. 333-338 Rayburn, J.R., Bantle, J.A., Friedman, M., Role of carbohydrate side chains of potato glycoalkaloids in developmental toxicity (1994) J. Agric. Food Chem., 42, pp. 1511-1515. , 1:CAS:528:DyaK2cXksFKisLs%3D Osbourn, A., Saponins and plant defense-a soap story (1996) Trends Plant Sci., 1, pp. 4-9 Oda, Y., Saito, K., Ohara-Takada, A., Mori, M., Hydrolysis of the potato glycoalkaloid alpha-chaconine by filamentous fungi (2002) J. Biosci. Bioeng., 94, pp. 321-325. , 1:CAS:528:DC%2BD3sXhtFSitg%3D%3D Kuc, J., Steroid glycoalkaloids and related compounds as potato quality factors (1982) Am. Potato J., 61, pp. 123-138 Wiseman, J.M., Ifa, D.R., Zhu, Y.X., Kissinger, C.B., Manicke, N.E., Kissinger, P.T., Cooks, R.G., Mass spectrometry across the sciences special feature: Desorption electrospray ionization mass spectrometry: Imaging drugs and metabolites in tissues (2008) Proc. Natl. Acad. Sci. U. S. A., 105, pp. 18120-18125 Vismeh, R., Waldon, D.J., Teffera, Y., Zhao, Z.Y., Localization and quantification of drugs in animal tissues by use of desorption electrospray ionization mass spectrometry imaging (2012) Anal. Chem., 84, pp. 5439-5445. , 1:CAS:528:DC%2BC38XnvVSnurs%3D Ellis, S.R., Bruinen, A.L., Heeren, R.M.A., A critical evaluation of the current state-of-the-art in quantitative imaging mass spectrometry (2014) Anal. Bioanal. Chem., 406, pp. 1275-1289. , 1:CAS:528:DC%2BC3sXhvVGgt73K