dc.creatorDias R.O.
dc.creatorVia A.
dc.creatorBrandao M.M.
dc.creatorTramontano A.
dc.creatorSilva-Filho M.C.
dc.date2015
dc.date2015-06-25T12:52:13Z
dc.date2015-11-26T15:03:28Z
dc.date2015-06-25T12:52:13Z
dc.date2015-11-26T15:03:28Z
dc.date.accessioned2018-03-28T22:14:19Z
dc.date.available2018-03-28T22:14:19Z
dc.identifier
dc.identifierInsect Biochemistry And Molecular Biology. Elsevier Ltd, v. 58, n. , p. 1 - 11, 2015.
dc.identifier9651748
dc.identifier10.1016/j.ibmb.2014.12.009
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921532173&partnerID=40&md5=e521286d0f7c57b6316f735025e532fe
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85361
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85361
dc.identifier2-s2.0-84921532173
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256620
dc.descriptionTrypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic l-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera.
dc.description58
dc.description
dc.description1
dc.description11
dc.descriptionAbascal, F., Zardoya, R., Posada, D., ProtTest: selection of best-fit models of protein evolution (2005) Bioinformatics, 21, pp. 2104-2105
dc.descriptionAbascal, F., Zardoya, R., Telford, M.J., TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations (2010) Nucleic Acids Res., 38, pp. W7-W13
dc.descriptionAltschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Res., 25, pp. 3389-3402
dc.descriptionArnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22, pp. 195-201
dc.descriptionBode, W., Meyer, E., Powers, J.C., Human-leukocyte and porcine pancreatic elastase - x-ray crystal-structures, mechanism, substrate-specificity, and mechanism-based inhibitors (1989) Biochemistry, 28, pp. 1951-1963
dc.descriptionBotos, I., Meyer, E., Nguyen, M., Swanson, S.M., Koomen, J.M., Russell, D.H., Meyer, E.F., The structure of an insect chymotrypsin (2000) J.Mol. Biol., 298, pp. 895-901
dc.descriptionChen, J.M., Kukor, Z., Le Marechal, U., Toth, M., Tsakiris, L., Raguenes, O., Ferec, C., Sahin-Toth, M., Evolution of trypsinogen activation peptides (2003) Mol. Biol. Evol., 20, pp. 1767-1777
dc.descriptionCraik, C.S., Largman, C., Fletcher, T., Roczniak, S., Barr, P.J., Fletterick, R., Rutter, W.J., Redesigning trypsin - alteration of substrate-specificity (1985) Science, 228, pp. 291-297
dc.descriptionDarriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: more models, new heuristics and parallel computing (2012) Nat. Methods, 9, p. 772
dc.descriptionDavis, C.A., Riddell, D.C., Higgins, M.J., Holden, J.J.A., White, B.N., Agene family in Drosophila-melanogaster coding for trypsinl-ike enzymes (1985) Nucleic Acids Res., 13, pp. 6605-6619
dc.descriptionDe Vries, S.J., van Dijk, M., Bonvin, A., The HADDOCK web server for data-driven biomolecular docking (2010) Nat. Protoc., 5, pp. 883-897
dc.descriptionEdgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797
dc.descriptionEisenberg, D., Schwarz, E., Komaromy, M., Wall, R., Analysis of membrane and surface protein sequences with the hydrophobic moment plot (1984) J.Mol. Biol., 179, pp. 125-142
dc.descriptionEswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M., Eramian, D., Shen, M., Pieper, U., Sali, A., Comparative protein structure modeling using Modeller (2006) Curr. Protoc. Bioinforma., pp. 5.6. 1-5.6. 30
dc.descriptionFerec, C., Raguenes, O., Salomon, R., Roche, C., Bernard, J.P., Guillot, M., Quere, I., Le Bodic, L., Mutations in the cationic trypsinogen gene and evidence for genetic heterogeneity in hereditary pancreatitis (1999) J.Med. Genet., 36, pp. 228-232
dc.descriptionHadorn, B., Tarlow, M., Lloyd, J., Wolff, O., Intestinal enterokinase deficiency (1969) Lancet, 293, pp. 812-813
dc.descriptionHedstrom, L., Serine protease mechanism and specificity (2002) Chem. Rev., 102, pp. 4501-4523
dc.descriptionHedstrom, L., Szilagyi, L., Rutter, W.J., Converting trypsin to chymotrypsin - the role of surface loops (1992) Science, 255, pp. 1249-1253
dc.descriptionHuelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755
dc.descriptionKitamoto, Y., Yuan, X., Wu, Q.Y., McCourt, D.W., Sadler, J.E., Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 7588-7592
dc.descriptionKoepke, J., Ermler, U., Warkentin, E., Wenzl, G., Flecker, P., Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 angstrom resolution. Structural basis of Janus-faced serine protease inhibitor specificity (2000) J.Mol. Biol., 298, pp. 477-491
dc.descriptionLaskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures (1993) J.Appl. Crystallogr., 26, pp. 283-291
dc.descriptionLopes, A.R., Juliano, M.A., Juliano, L., Terra, W.R., Coevolution of insect trypsins and inhibitors (2004) Arch. Insect Biochem. Physiol., 55, pp. 140-152
dc.descriptionLopes, A.R., Juliano, M.A., Marana, S.R., Juliano, L., Terra, W.R., Substrate specificity of insect trypsins and the role of their subsites in catalysis (2006) Insect Biochem. Mol. Biol., 36, pp. 130-140
dc.descriptionMaroux, S., Baratti, J., Desnuelle, P., Purification and specificity of porcine enterokinase (1971) J.Biol. Chem., 246, pp. 5031-5039
dc.descriptionMuller, H.M., Crampton, J.M., Dellatorre, A., Sinden, R., Crisanti, A., Members of a trypsin gene family in Anopheles-gambiae are induced in the gut by blood meal (1993) EMBO J., 12, pp. 2891-2900
dc.descriptionPaulillo, L.C., Lopes, A.R., Cristofoletti, P.T., Parra, J.R., Terra, W.R., Silva-Filho, M.C., Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors (2000) J.Econ. Entomol., 93, pp. 892-896
dc.descriptionPerona, J.J., Craik, C.S., Structural basis of substrate-specificity in the serine proteases (1995) Protein Sci., 4, pp. 337-360
dc.descriptionPettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF chimera - A visualization system for exploratory research and analysis (2004) J.Comput Chem., 25, pp. 1605-1612
dc.descriptionRinderknecht, H., Activation of pancreatic zymogens (1986) Dig. Dis. Sci., 31, pp. 314-321
dc.descriptionSato, P.M., Lopes, A.R., Juliano, L., Juliano, M.A., Terra, W.R., Subsite substrate specificity of midgut insect chymotrypsins (2008) Insect Biochem. Mol. Biol., 38, pp. 628-633
dc.descriptionSchechter, I., Berger, A., On the active site of proteases. III. Mapping the active site of papain
dc.descriptionspecific peptide inhibitors of papain (1968) Biochem. Biophys. Res. Commun., 32, pp. 898-902
dc.descriptionSchellenberger, V., Turck, C.W., Rutter, W.J., Role of the s' subsites in serine-protease catalysis - active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from Schistosoma-mansoni (1994) Biochemistry, 33, pp. 4251-4257
dc.descriptionSchmidt, A., Jelsch, C., Ostergaard, P., Rypniewski, W., Lamzin, V.S., Trypsin revisited crystallography at (sub) atomic resolution and quantum chemistry revealing details of catalysis (2003) J.Biol. Chem., 278, pp. 43357-43362
dc.descriptionSeetharam, A., Stuart, G.W., Whole genome phylogenies for multiple Drosophila species (2012) BMC Res. Notes, 5, p. 670
dc.descriptionSichler, K., Hopfner, K.P., Kopetzki, E., Huber, R., Bode, W., Brandstetter, H., The influence of residue 190 in the S1 site of trypsin-like serine proteases on substrate selectivity is universally conserved (2002) Febs Lett., 530, pp. 220-224
dc.descriptionTeich, N., Ockenga, J., Hoffmeister, A., Manns, M., Mossner, J., Keim, V., Chronic pancreatitis associated with an activation peptide mutation that facilitates trypsin activation (2000) Gastroenterology, 119, pp. 461-465
dc.descriptionTerra, W.R., Ferreira, C., Insect digestive enzymes - properties, compartmentalization and function (1994) Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 109, pp. 1-62
dc.descriptionThompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res., 22, pp. 4673-4680
dc.descriptionTina, K.G., Bhadra, R., Srinivasan, N., PIC: protein interactions calculator (2007) Nucleic Acids Res., 35, pp. W473-W476
dc.descriptionTrautwein, M.D., Wiegmann, B.M., Beutel, R., Kjer, K.M., Yeates, D.K., Advances in insect phylogeny at the dawn of the Postgenomic Era (2012) Annu Rev. Entomol., 57, p. 449. , (+)
dc.descriptionVeitia, R.A., Caburet, S., Extensive sequence turnover of the signal peptides of members of the GDF/BMP family: exploring their evolutionary landscape (2009) Biol. Direct., 4
dc.descriptionWang, S.J., Magoulas, C., Hickey, D., Concerted evolution within a trypsin gene cluster in Drosophila (1999) Mol. Biol. Evol., 16, pp. 1117-1124
dc.descriptionYang, Z., PAML 4: phylogenetic analysis by maximum likelihood (2007) Mol. Biol. Evol., 24, pp. 1586-1591
dc.languageen
dc.publisherElsevier Ltd
dc.relationInsect Biochemistry and Molecular Biology
dc.rightsfechado
dc.sourceScopus
dc.titleDigestive Peptidase Evolution In Holometabolous Insects Led To A Divergent Group Of Enzymes In Lepidoptera
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución