dc.creator | Dias R.O. | |
dc.creator | Via A. | |
dc.creator | Brandao M.M. | |
dc.creator | Tramontano A. | |
dc.creator | Silva-Filho M.C. | |
dc.date | 2015 | |
dc.date | 2015-06-25T12:52:13Z | |
dc.date | 2015-11-26T15:03:28Z | |
dc.date | 2015-06-25T12:52:13Z | |
dc.date | 2015-11-26T15:03:28Z | |
dc.date.accessioned | 2018-03-28T22:14:19Z | |
dc.date.available | 2018-03-28T22:14:19Z | |
dc.identifier | | |
dc.identifier | Insect Biochemistry And Molecular Biology. Elsevier Ltd, v. 58, n. , p. 1 - 11, 2015. | |
dc.identifier | 9651748 | |
dc.identifier | 10.1016/j.ibmb.2014.12.009 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84921532173&partnerID=40&md5=e521286d0f7c57b6316f735025e532fe | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85361 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85361 | |
dc.identifier | 2-s2.0-84921532173 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1256620 | |
dc.description | Trypsins and chymotrypsins are well-studied serine peptidases that cleave peptide bonds at the carboxyl side of basic and hydrophobic l-amino acids, respectively. These enzymes are largely responsible for the digestion of proteins. Three primary processes regulate the activity of these peptidases: secretion, precursor (zymogen) activation and substrate-binding site recognition. Here, we present a detailed phylogenetic analysis of trypsins and chymotrypsins in three orders of holometabolous insects and reveal divergent characteristics of Lepidoptera enzymes in comparison with those of Coleoptera and Diptera. In particular, trypsin subsite S1 was more hydrophilic in Lepidoptera than in Coleoptera and Diptera, whereas subsites S2-S4 were more hydrophobic, suggesting different substrate preferences. Furthermore, Lepidoptera displayed a lineage-specific trypsin group belonging only to the Noctuidae family. Evidence for facilitated trypsin auto-activation events were also observed in all the insect orders studied, with the characteristic zymogen activation motif complementary to the trypsin active site. In contrast, insect chymotrypsins did not seem to have a peculiar evolutionary history with respect to their mammal counterparts. Overall, our findings suggest that the need for fast digestion allowed holometabolous insects to evolve divergent groups of peptidases with high auto-activation rates, and highlight that the evolution of trypsins led to a most diverse group of enzymes in Lepidoptera. | |
dc.description | 58 | |
dc.description | | |
dc.description | 1 | |
dc.description | 11 | |
dc.description | Abascal, F., Zardoya, R., Posada, D., ProtTest: selection of best-fit models of protein evolution (2005) Bioinformatics, 21, pp. 2104-2105 | |
dc.description | Abascal, F., Zardoya, R., Telford, M.J., TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations (2010) Nucleic Acids Res., 38, pp. W7-W13 | |
dc.description | Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Res., 25, pp. 3389-3402 | |
dc.description | Arnold, K., Bordoli, L., Kopp, J., Schwede, T., The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling (2006) Bioinformatics, 22, pp. 195-201 | |
dc.description | Bode, W., Meyer, E., Powers, J.C., Human-leukocyte and porcine pancreatic elastase - x-ray crystal-structures, mechanism, substrate-specificity, and mechanism-based inhibitors (1989) Biochemistry, 28, pp. 1951-1963 | |
dc.description | Botos, I., Meyer, E., Nguyen, M., Swanson, S.M., Koomen, J.M., Russell, D.H., Meyer, E.F., The structure of an insect chymotrypsin (2000) J.Mol. Biol., 298, pp. 895-901 | |
dc.description | Chen, J.M., Kukor, Z., Le Marechal, U., Toth, M., Tsakiris, L., Raguenes, O., Ferec, C., Sahin-Toth, M., Evolution of trypsinogen activation peptides (2003) Mol. Biol. Evol., 20, pp. 1767-1777 | |
dc.description | Craik, C.S., Largman, C., Fletcher, T., Roczniak, S., Barr, P.J., Fletterick, R., Rutter, W.J., Redesigning trypsin - alteration of substrate-specificity (1985) Science, 228, pp. 291-297 | |
dc.description | Darriba, D., Taboada, G.L., Doallo, R., Posada, D., JModelTest 2: more models, new heuristics and parallel computing (2012) Nat. Methods, 9, p. 772 | |
dc.description | Davis, C.A., Riddell, D.C., Higgins, M.J., Holden, J.J.A., White, B.N., Agene family in Drosophila-melanogaster coding for trypsinl-ike enzymes (1985) Nucleic Acids Res., 13, pp. 6605-6619 | |
dc.description | De Vries, S.J., van Dijk, M., Bonvin, A., The HADDOCK web server for data-driven biomolecular docking (2010) Nat. Protoc., 5, pp. 883-897 | |
dc.description | Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797 | |
dc.description | Eisenberg, D., Schwarz, E., Komaromy, M., Wall, R., Analysis of membrane and surface protein sequences with the hydrophobic moment plot (1984) J.Mol. Biol., 179, pp. 125-142 | |
dc.description | Eswar, N., Webb, B., Marti-Renom, M.A., Madhusudhan, M., Eramian, D., Shen, M., Pieper, U., Sali, A., Comparative protein structure modeling using Modeller (2006) Curr. Protoc. Bioinforma., pp. 5.6. 1-5.6. 30 | |
dc.description | Ferec, C., Raguenes, O., Salomon, R., Roche, C., Bernard, J.P., Guillot, M., Quere, I., Le Bodic, L., Mutations in the cationic trypsinogen gene and evidence for genetic heterogeneity in hereditary pancreatitis (1999) J.Med. Genet., 36, pp. 228-232 | |
dc.description | Hadorn, B., Tarlow, M., Lloyd, J., Wolff, O., Intestinal enterokinase deficiency (1969) Lancet, 293, pp. 812-813 | |
dc.description | Hedstrom, L., Serine protease mechanism and specificity (2002) Chem. Rev., 102, pp. 4501-4523 | |
dc.description | Hedstrom, L., Szilagyi, L., Rutter, W.J., Converting trypsin to chymotrypsin - the role of surface loops (1992) Science, 255, pp. 1249-1253 | |
dc.description | Huelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755 | |
dc.description | Kitamoto, Y., Yuan, X., Wu, Q.Y., McCourt, D.W., Sadler, J.E., Enterokinase, the initiator of intestinal digestion, is a mosaic protease composed of a distinctive assortment of domains (1994) Proc. Natl. Acad. Sci. U. S. A., 91, pp. 7588-7592 | |
dc.description | Koepke, J., Ermler, U., Warkentin, E., Wenzl, G., Flecker, P., Crystal structure of cancer chemopreventive Bowman-Birk inhibitor in ternary complex with bovine trypsin at 2.3 angstrom resolution. Structural basis of Janus-faced serine protease inhibitor specificity (2000) J.Mol. Biol., 298, pp. 477-491 | |
dc.description | Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M., PROCHECK: a program to check the stereochemical quality of protein structures (1993) J.Appl. Crystallogr., 26, pp. 283-291 | |
dc.description | Lopes, A.R., Juliano, M.A., Juliano, L., Terra, W.R., Coevolution of insect trypsins and inhibitors (2004) Arch. Insect Biochem. Physiol., 55, pp. 140-152 | |
dc.description | Lopes, A.R., Juliano, M.A., Marana, S.R., Juliano, L., Terra, W.R., Substrate specificity of insect trypsins and the role of their subsites in catalysis (2006) Insect Biochem. Mol. Biol., 36, pp. 130-140 | |
dc.description | Maroux, S., Baratti, J., Desnuelle, P., Purification and specificity of porcine enterokinase (1971) J.Biol. Chem., 246, pp. 5031-5039 | |
dc.description | Muller, H.M., Crampton, J.M., Dellatorre, A., Sinden, R., Crisanti, A., Members of a trypsin gene family in Anopheles-gambiae are induced in the gut by blood meal (1993) EMBO J., 12, pp. 2891-2900 | |
dc.description | Paulillo, L.C., Lopes, A.R., Cristofoletti, P.T., Parra, J.R., Terra, W.R., Silva-Filho, M.C., Changes in midgut endopeptidase activity of Spodoptera frugiperda (Lepidoptera: Noctuidae) are responsible for adaptation to soybean proteinase inhibitors (2000) J.Econ. Entomol., 93, pp. 892-896 | |
dc.description | Perona, J.J., Craik, C.S., Structural basis of substrate-specificity in the serine proteases (1995) Protein Sci., 4, pp. 337-360 | |
dc.description | Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF chimera - A visualization system for exploratory research and analysis (2004) J.Comput Chem., 25, pp. 1605-1612 | |
dc.description | Rinderknecht, H., Activation of pancreatic zymogens (1986) Dig. Dis. Sci., 31, pp. 314-321 | |
dc.description | Sato, P.M., Lopes, A.R., Juliano, L., Juliano, M.A., Terra, W.R., Subsite substrate specificity of midgut insect chymotrypsins (2008) Insect Biochem. Mol. Biol., 38, pp. 628-633 | |
dc.description | Schechter, I., Berger, A., On the active site of proteases. III. Mapping the active site of papain | |
dc.description | specific peptide inhibitors of papain (1968) Biochem. Biophys. Res. Commun., 32, pp. 898-902 | |
dc.description | Schellenberger, V., Turck, C.W., Rutter, W.J., Role of the s' subsites in serine-protease catalysis - active-site mapping of rat chymotrypsin, rat trypsin, alpha-lytic protease, and cercarial protease from Schistosoma-mansoni (1994) Biochemistry, 33, pp. 4251-4257 | |
dc.description | Schmidt, A., Jelsch, C., Ostergaard, P., Rypniewski, W., Lamzin, V.S., Trypsin revisited crystallography at (sub) atomic resolution and quantum chemistry revealing details of catalysis (2003) J.Biol. Chem., 278, pp. 43357-43362 | |
dc.description | Seetharam, A., Stuart, G.W., Whole genome phylogenies for multiple Drosophila species (2012) BMC Res. Notes, 5, p. 670 | |
dc.description | Sichler, K., Hopfner, K.P., Kopetzki, E., Huber, R., Bode, W., Brandstetter, H., The influence of residue 190 in the S1 site of trypsin-like serine proteases on substrate selectivity is universally conserved (2002) Febs Lett., 530, pp. 220-224 | |
dc.description | Teich, N., Ockenga, J., Hoffmeister, A., Manns, M., Mossner, J., Keim, V., Chronic pancreatitis associated with an activation peptide mutation that facilitates trypsin activation (2000) Gastroenterology, 119, pp. 461-465 | |
dc.description | Terra, W.R., Ferreira, C., Insect digestive enzymes - properties, compartmentalization and function (1994) Comp. Biochem. Physiol. B, Biochem. Mol. Biol., 109, pp. 1-62 | |
dc.description | Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL-W - Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res., 22, pp. 4673-4680 | |
dc.description | Tina, K.G., Bhadra, R., Srinivasan, N., PIC: protein interactions calculator (2007) Nucleic Acids Res., 35, pp. W473-W476 | |
dc.description | Trautwein, M.D., Wiegmann, B.M., Beutel, R., Kjer, K.M., Yeates, D.K., Advances in insect phylogeny at the dawn of the Postgenomic Era (2012) Annu Rev. Entomol., 57, p. 449. , (+) | |
dc.description | Veitia, R.A., Caburet, S., Extensive sequence turnover of the signal peptides of members of the GDF/BMP family: exploring their evolutionary landscape (2009) Biol. Direct., 4 | |
dc.description | Wang, S.J., Magoulas, C., Hickey, D., Concerted evolution within a trypsin gene cluster in Drosophila (1999) Mol. Biol. Evol., 16, pp. 1117-1124 | |
dc.description | Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood (2007) Mol. Biol. Evol., 24, pp. 1586-1591 | |
dc.language | en | |
dc.publisher | Elsevier Ltd | |
dc.relation | Insect Biochemistry and Molecular Biology | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Digestive Peptidase Evolution In Holometabolous Insects Led To A Divergent Group Of Enzymes In Lepidoptera | |
dc.type | Artículos de revistas | |