Artículos de revistas
Understanding The Function Of Conserved Variations In The Catalytic Loops Of Fungal Glycoside Hydrolase Family 12
Registro en:
Biotechnology And Bioengineering. John Wiley And Sons Inc., v. 111, n. 8, p. 1494 - 1505, 2014.
63592
10.1002/bit.25209
2-s2.0-84903314995
Autor
Damasio A.R.L.
Rubio M.V.
Oliveira L.C.
Segato F.
Dias B.A.
Citadini A.P.
Paixao D.A.
Squina F.M.
Institución
Resumen
Enzymes that cleave the xyloglucan backbone at unbranched glucose residues have been identified in GH families 5, 7, 12, 16, 44, and 74. Fungi produce enzymes that populate 20 of 22 families that are considered critical for plant biomass deconstruction. We searched for GH12-encoding genes in 27 Eurotiomycetes genomes. After analyzing 50 GH12-related sequences, the conserved variations of the amino acid sequences were examined. Compared to the endoglucanases, the endo-xyloglucanase-associated YSG deletion at the negative subsites of the catalytic cleft with a SST insertion at the reducing end of the substrate-binding crevice is highly conserved. In addition, a highly conserved alanine residue was identified in all xyloglucan-specific enzymes, and this residue is substituted by arginine in more promiscuous glucanases. To understand the basis for the xyloglucan specificity displayed by certain GH12 enzymes, two fungal GH12 endoglucanases were chosen for mutagenesis and functional studies: an endo-xyloglucanase from Aspergillus clavatus (AclaXegA) and an endoglucanase from A. terreus (AtEglD). Comprehensive molecular docking studies and biochemical analyses were performed, revealing that mutations at the entrance of the catalytic cleft in AtEglD result in a wider binding cleft and the alteration of the substrate-cleavage pattern, implying that a trio of residues coordinates the interactions and binding to linear glycans. The loop insertion at the crevice-reducing end of AclaXegA is critical for catalytic efficiency to hydrolyze xyloglucan. The understanding of the structural elements governing endo-xyloglucanase activity on linear and branched glucans will facilitate future enzyme modifications with potential applications in industrial biotechnology. © 2014 Wiley Periodicals, Inc. 111 8 1494 1505 Basma, M., Sundara, S., Calgan, D., Vernali, T., Woods, R.J., Solvated ensemble averaging in the calculation of partial atomic charges (2001) J Comput Chem, 22 (11), pp. 1125-1137 Bradford, M.M., Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding (1976) Anal Biochem, 72 (1-2), pp. 248-254 Buckeridge, M.S., Seed cell wall storage polysaccharides: Models to understand cell wall biosynthesis and degradation (2010) Plant Physiol, 154 (3), pp. 1017-1023 Buckeridge, M.S., Rocha, D.C., Reid, J.S.G., Dietrich, S.M.C., Xyloglucan structure and post-germinative metabolism in seeds of Copaifera langsdorfii from savanna and forest populations (1992) Physiol Plant, 86 (1), pp. 145-151 Buckeridge, M.S., Santos, H.P., Tiné, M.A.S., Mobilisation of storage cell wall polysaccharides in seeds (2000) Plant Physiol Biochem, 38, pp. 141-156 Carpita, N.C., McCann, M.C., The cell wall (2000) Biochemistry and molecular biology of plants, pp. 52-109. , In: Buchanan BB, Gruissem W, Jones R, editors. Rockville: American Society of Plant Physiologists Cota, J., Alvarez, T.M., Citadini, A.P., Santos, C.R., de Oliveira Neto, M., Oliveira, R.R., Pastore, G.M., Squina, F.M., Mode of operation and low-resolution structure of a multi-domain and hyperthermophilic endo-beta-1,3-glucanase from Thermotoga petrophila (2011) Biochem Biophys Res Commun, 406 (4), pp. 590-594 Damasio, A.R., Ribeiro, L.F., Furtado, G.P., Segato, F., Almeida, F.B., Crivellari, A.C., Buckeridge, M.S., Polizeli, M.L.T.M., Functional characterization and oligomerization of a recombinant xyloglucan-specific endo-beta-1,4-glucanase (GH12) from Aspergillus niveus (2012) Biochim Biophys Acta, 1824 (3), pp. 461-467 Dunbrack Jr., R.L., Rotamer libraries in the 21st century (2002) Curr Opin Struct Biol, 12 (4), pp. 431-440 Geiser, D.M., Gueidan, C., Miadlikowska, J., Lutzoni, F., Kauff, F., Hofstetter, V., Fraker, E., Aptroot, A., Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae (2006) Mycologia, 98 (6), pp. 1053-1064 Gilbert, H.J., Stalbrand, H., Brumer, H., How the walls come crumbling down: Recent structural biochemistry of plant polysaccharide degradation (2008) Curr Opin Plant Biol, 11 (3), pp. 338-348 Gloster, T.M., Ibatullin, F.M., Macauley, K., Eklof, J.M., Roberts, S., Turkenburg, J.P., Bjornvad, M.E., Davies, G.J., Characterization and three-dimensional structures of two distinct bacterial xyloglucanases from families GH5 and GH12 (2007) J Biol Chem, 282 (26), pp. 19177-19189 Grigoriev, I.V., Nordberg, H., Shabalov, I., Aerts, A., Cantor, M., Goodstein, D., Kuo, A., Dubchak, I., The genome portal of the Department of Energy Joint Genome Institute (2012) Nucleic Acids Res, 40, pp. D26-D32. , Database issue Heckman, K.L., Pease, L.R., Gene splicing and mutagenesis by PCR-driven overlap extension (2007) Nat Protoc, 2 (4), pp. 924-932 Hollup, S.M., Salensminde, G., Reuter, N., WEBnm@: A web application for normal mode analyses of proteins (2005) BMC Bioinform, 6, p. 52 Iglesias, N., Abelenda, J.A., Rodino, M., Sampedro, J., Revilla, G., Zarra, I., Apoplastic glycosidases active against xyloglucan oligosaccharides of Arabidopsis thaliana (2006) Plant Cell Physiol, 47 (1), pp. 55-63 Jovanovic, I., Magnuson, J., Collart, F., Robbertse, B., Adney, W., Himmel, M., Baker, S., Fungal glycoside hydrolases for saccharification of lignocellulose: Outlook for new discoveries fueled by genomics and functional studies (2009) Cellulose, 16 (4), pp. 687-697 Khademi, S., Zhang, D., Swanson, S.M., Wartenberg, A., Witte, K., Meyer, E.F., Determination of the structure of an endoglucanase from Aspergillus niger and its mode of inhibition by palladium chloride (2002) Acta Crystallogr D Biol Crystallogr, 58 (PART 4), pp. 660-667 Kirschner, K.N., Woods, R.J., Quantum mechanical study of the nonbonded forces in water-methanol complexes (2001) J Phys Chem A, 105 (16), pp. 4150-4155 Kirschner, K.N., Woods, R.J., Solvent interactions determine carbohydrate conformation (2001) Proc Natl Acad Sci USA, 98 (19), pp. 10541-10545 Lang, P.T., Brozell, S.R., Mukherjee, S., Pettersen, E.F., Meng, E.C., Thomas, V., Rizzo, R.C., Kuntz, I.D., DOCK 6: Combining techniques to model RNA-small molecule complexes (2009) RNA, 15 (6), pp. 1219-1230 Master, E.R., Zheng, Y., Storms, R., Tsang, A., Powlowski, J., A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: Recombinant expression, purification and characterization (2008) Biochem J, 411, pp. 161-170 Miller, G.L., Use of dinitrosalicylic acid reagent for determination of reducing sugar (1959) Anal Chem, 31 (3), pp. 426-428 Moustakas, D.T., Lang, P.T., Pegg, S., Pettersen, E., Kuntz, I.D., Brooijmans, N., Rizzo, R.C., Development and validation of a modular, extensible docking program: DOCK 5 (2006) J Comput Aided Mol Des, 20 (10-11), pp. 601-619 Naran, R., Pierce, M.L., Mort, A.J., Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons (2007) Plant J, 50 (1), pp. 95-107 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., UCSF Chimera-A visualization system for exploratory research and analysis (2004) J Comput Chem, 25 (13), pp. 1605-1612 Powlowski, J., Mahajan, S., Schapira, M., Master, E.R., Substrate recognition and hydrolysis by a fungal xyloglucan-specific family 12 hydrolase (2009) Carbohydr Res, 344 (10), pp. 1175-1179 Prates, E.T., Stankovic, I., Silveira, R.L., Liberato, M.V., Henrique-Silva, F., Pereira Jr., N., Polikarpov, I., Skaf, M.S., X-ray structure and molecular dynamics simulations of endoglucanase 3 from Trichoderma harzianum: Structural organization and substrate recognition by endoglucanases that lack cellulose binding module (2013) PLoS ONE, 8 (3), pp. e59069 Sagermann, M., Matthews, B.W., Crystal structures of a T4-lysozyme duplication-extension mutant demonstrate that the highly conserved beta-sheet region has low intrinsic folding propensity (2002) J Mol Biol, 316 (4), pp. 931-940 Sali, A., Blundell, T.L., Comparative protein modelling by satisfaction of spatial restraints (1993) J Mol Biol, 234 (3), pp. 779-815 Sambrook, J., Fritsch, E.F., Maniatis, T., (1988) Molecular cloning: A laboratory manual, 1659p. , New York: Cold Spring Harbor Laboratory Sandgren, M., Shaw, A., Ropp, T.H., Wu, S., Bott, R., Cameron, A.D., Stahlberg, J., Jones, T.A., The X-ray crystal structure of the Trichoderma reesei family 12 endoglucanase 3, Cel12A, at 1.9 A resolution (2001) J Mol Biol, 308 (2), pp. 295-310 Sandgren, M., Stahlberg, J., Mitchinson, C., Structural and biochemical studies of GH family 12 cellulases: Improved thermal stability, and ligand complexes (2005) Prog Biophys Mol Biol, 89 (3), pp. 246-291 Segato, F., Damasio, A.R., Goncalves, T.A., de Lucas, R.C., Squina, F.M., Decker, S.R., Prade, R.A., High-yield secretion of multiple client proteins in Aspergillus (2012) Enzyme Microb Technol, 51 (2), pp. 100-106 Shapiro, A.L., Vinuela, E., Maizel Jr., J.V., Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels (1967) Biochem Biophys Res Commun, 28 (5), pp. 815-820 Soding, J., Biegert, A., Lupas, A.N., The HHpred interactive server for protein homology detection and structure prediction (2005) Nucleic Acids Res, 33, pp. W244-W248. , Web Server issue Song, S., Tang, Y., Yang, S., Yan, Q., Zhou, P., Jiang, Z., Characterization of two novel family 12 xyloglucanases from the thermophilic Rhizomucor miehei (2013) Appl Microbiol Biotechnol, 97 (23), pp. 10013-10024 Vincken, J.P., Beldman, G., Voragen, A.G., Substrate specificity of endoglucanases: What determines xyloglucanase activity (1997) Carbohydr Res, 298 (4), pp. 299-310 Yoshizawa, T., Shimizu, T., Hirano, H., Sato, M., Hashimoto, H., Structural basis for inhibition of xyloglucan-specific endo-beta-1,4-glucanase (XEG) by XEG-protein inhibitor (2012) J Biol Chem, 287 (22), pp. 18710-18716 Znameroski, E., Glass, N.L., Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction (2013) Biotechnol Biofuels, 6 (1), p. 6