Artículos de revistas
Burkholderia Sp. Scms54 Triggers A Global Stress Defense In Tomato Enhancing Cadmium Tolerance
Registro en:
Water, Air, And Soil Pollution. Kluwer Academic Publishers, v. 225, n. 10, p. - , 2014.
496979
10.1007/s11270-014-2159-7
2-s2.0-84920911502
Autor
Dourado M.N.
Souza L.A.
Martins P.F.
Peters L.P.
Piotto F.A.
Azevedo R.A.
Institución
Resumen
Cadmium is a toxic element for living organisms. This metal causes different damages to the cell, generating oxidative stress. In order to elucidate cadmium tolerance mechanism and increase tomato plant tolerance by inoculating a Cd-tolerant Burkholderia strain, we analyzed malondialdehyde, hydrogen peroxide content, and the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase of two strains, one isolated from a soil contaminated with Cd (strain SCMS54) and the other from a soil without Cd (strain SNMS32). Strains SNMS32 and SCMS54 exhibited different SOD, CAT, and GR isoenzyme profiles in non-denaturing polyacrylamide gel electrophoresis analysis, with strain SCMS54 exhibiting an extra isoenzyme for all enzymes (Mn-SOD, CAT I, and GR IV, respectively). Despite accumulating more Cd, strain SCMS54 did not increase peroxide hydrogen and presented a fast antioxidant response (increasing SOD and CAT after 5 h of Cd exposure). In this way, strain SCMS54 exhibited a higher metabolic diversity and plasticity when compared to strain SNMS32, so it was selected for Cd-Burkholderia-tomato interaction studies. Inoculated tomato plants in the presence of Cd grew more than non-inoculated plants with Cd indicating that the SCMS54 increased tomato Cd tolerance. It appears that the strain isolated from Cd-contaminated soil (SCMS54) triggers a global stress response in tomato increasing plant tolerance, which may enable plants to be cultivated in Cd-contaminated soils. 225 10
Abou-Shanab, R.A.I., Van Berkum, P., Angle, J.S., Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale (2007) Chemosphere, 68, pp. 360-367. , 1:CAS:528:DC%2BD2sXjvFOnt78%3D Ahmad, I., Akhtar, M.J., Zahir, Z.A., Naveed, M., Mitter, B., Sessitsch, A., Cadmium-tolerant bacteria induce metal stress tolerance in cereals (2014) Environmental Science and Pollution Research, 21, pp. 11054-11065 Alexieva, V., Sergiev, I., Mapelli, S., Karanov, E., The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat (2001) Plant, Cell & Environment, 24, pp. 1337-1344. , 1:CAS:528:DC%2BD38XisFCltw%3D%3D Allocati, N., Federici, L., Masulli, M., Di Ilio, C., Glutathione transferases in bacteria (2009) Federation of European Biochemical Societies Journal, 276, pp. 58-75. , 1:CAS:528:DC%2BD1MXhvFWqtQ%3D%3D Alloway, B.J., (1995) Heavy Metals in Soils, p. 368p. , 2 Blackie Academic & Professional London Apel, K., Hirt, H., Reactive oxygen species: Metabolism, oxidative stress, and signal transduction (2004) Annual Review of Plant Biology, 55, pp. 373-399. , 1:CAS:528:DC%2BD2cXlvFeisL0%3D Arruda, M.A.Z., Azevedo, R.A., Metallomics and chemical speciation: Towards a better understanding of metal-induced stress in plants (2009) Annals of Applied Biology, 155, pp. 301-307. , 1:CAS:528:DC%2BD1MXhs1SlurvL Azcón, R., Perálvarez, M.D.C., Roldán, A., Barea, J.-M., Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants (2010) Microbial Ecology, 59, pp. 668-677 Azevedo, R.A., Alas, R.M., Smith, R.J., Lea, P.J., Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley (1998) Physiologia Plantarum, 104, pp. 280-292. , 1:CAS:528:DyaK1cXnsFSrtrY%3D Azevedo, R.A., Gratão, P.L., Monteiro, C.C., Carvalho, R.F., What is new in the research on cadmium-induced stress in plants? (2012) Food and Energy Security, 1, pp. 133-140 Banjerdkij, P., Vattanaviboon, P., Mongkolsuk, S., Exposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris (2005) Applied and Environmental Microbiology, 71, pp. 1843-1849. , 1:CAS:528:DC%2BD2MXjsVOqtLs%3D Beauchamp, C., Fridovich, I., Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels (1971) Analytical Biochemistry, 287, pp. 276-287 Bhakta, J.N., Ohnishi, K., Munekage, Y., Iwasaki, K., Wei, M.Q., Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents (2012) Journal of Applied Microbiology, 112, pp. 1193-1206. , 1:CAS:528:DC%2BC38XhtFWhu7nM Bianucci, E., Fabra, A., Castro, S., Involvement of glutathione and enzymatic defense system against cadmium toxicity in Bradyrhizobium sp. strains (peanut symbionts) (2012) Biometals, 25, pp. 23-32 Boaretto, L.F., Carvalho, G., Borgo, L., Creste, S., Landell, M.G.A., Mazzafera, P., Azevedo, R.A., Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes (2014) Plant Physiology and Biochemistry, 74, pp. 165-175. , 1:CAS:528:DC%2BC2cXhtF2mtrk%3D Bradford, M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding (1976) Analytical Biochemistry, 72, pp. 248-254. , 1:CAS:528:DyaE28XksVehtrY%3D Bulbovas, P., Souza, S.R., Esposito, J.B.N., Moraes, R.M., Alves, E.S., Domingos, M., Azevedo, R.A., Assessment of the ozone tolerance of two soybean cultivars (Glycine max cv. Sambaíba and Tracajá) cultivated in Amazonian areas (2014) Environmental Science and Pollution Research, 21, pp. 10514-10524. , 1:CAS:528:DC%2BC2cXntleju7c%3D Cabiscol, E., Tamarit, J., Ros, J., Oxidative stress in bacteria and protein damage by reactive oxygen species (2010) International Microbiology, 3, pp. 3-8 Cervantes, C., Acevedo-Aguila, F., Léon-Rodríguez, I.L., Rivera-Cano, M.E., Avila-Rodríguez, M., Wrobel-Kaczmarczyk, K., Wróbel-Zasada, K., Moreno-Sánchez, R., Interacciones microbianas con metales pesados (2006) Revista Latinoamericana de Microbiología, 48, pp. 203-210. , 1:STN:280:DC%2BD2szmsVCmtQ%3D%3D (2005) Valores Orientados Para Solos e Aguas Subterraneas No Estado de Sao Paulo, p. 4p. , CETESB Sao Paulo Chen, Z.J., Sheng, X.F., He, L.Y., Huang, Z., Zhang, W.H., Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil (2013) Journal of Hazardous Materials, 244-245, pp. 709-717 Cia, M.C., Guimarães, A.C.R., Medici, L.O., Chabregas, S.M., Azevedo, R.A., Antioxidant responses to water deficit by drought-tolerant and -sensitive sugarcane varieties (2012) Annals of Applied Biology, 161, pp. 313-324. , 1:CAS:528:DC%2BC3sXjs1Kltw%3D%3D Claire-Lise, M., Nathalie, V., The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils (2012) New Biotechnology, 30, pp. 9-14. , 1:CAS:528:DC%2BC38XhsFWiurnI Clemens, S., Aarts, M.G., Thomine, S., Verbruggen, N., Plant science: The key to preventing slow cadmium poisoning (2013) Trends in Plant Science, 18, pp. 92-99. , 1:CAS:528:DC%2BC38XhtlGqt7%2FK Coenye, T., Vandamme, P., Govan, J.R.W., Lipuma, J., Coenye, T.O.M., Taxonomy and identification of the Burkholderia cepacia complex (2001) Journal of Clinical Microbiology, 39, pp. 3427-3436. , 1:CAS:528:DC%2BD3MXnslKitLo%3D Das, P., Samantaray, S., Rout, G., Studies on cadmium toxicity in plants: A review (1997) Environmental Pollution, 98, pp. 29-36. , 1:CAS:528:DyaK1cXht12isLo%3D Dourado, M.D., Martins, P.F., Quecine, M.C., Piotto, F.A., Souza, L.A., Franco, M.R., Tezotto, T., Azevedo, R.A., Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato (2013) Annals of Applied Biology, 163, pp. 494-507. , 1:CAS:528:DC%2BC3sXhs1Ortr7E Dworkin, M., Foster, J.W., Experiments with some microorganisms which utilize ethane and hydrogen (1958) Journal of Bacteriology, 75, pp. 592-603. , 1:CAS:528:DyaG1cXms12ltQ%3D%3D Eerd, L.V., Hoagland, R., Zablotowicz, R., Hall, J., Pesticide metabolism in plants and microorganisms (2003) Weed Science, 51, pp. 472-495 Farr, S.B., Kogoma, T., Oxidative stress responses in Escherichia coli and Salmonella typhimurium (1991) Microbiological Reviews, 55, pp. 561-585. , 1:CAS:528:DyaK38Xht1CntL8%3D Ferreira, A., Quecine, M.C., Lacava, P.T., Oda, S., Azevedo, J.L., Araújo, W.L., Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans (2008) FEMS Microbiology Letters, 287, pp. 8-14. , 1:CAS:528:DC%2BD1cXhtFOitrfM Figueira, E., Lima, A.I.G., Pereira, S.I.A., Cadmium tolerance plasticity in Rhizobium leguminosarum bv. viciae: Glutathione as a detoxifying agent (2005) Canadian Journal of Microbiology, 51, pp. 7-14. , 1:CAS:528:DC%2BD2MXjsFyisbo%3D Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., Zaks, D.P.M., Solutions for a cultivated planet (2011) Nature, 478, pp. 337-342. , 1:CAS:528:DC%2BC3MXhtlSktbjF Gadd, G.M., Microbial influence on metal mobility and application for bioremediation (2004) Geoderma, 122, pp. 109-119. , 1:CAS:528:DC%2BD2cXntlaqtrY%3D Gadd, G.M., Rhee, Y.J., Stephenson, K., Wei, Z., Geomycology: Metals, actinides and biominerals (2012) Environmental Microbiology Reports, 4, pp. 270-296. , 1:CAS:528:DC%2BC38XovVyrsbc%3D Gallego, S.M., Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Iannone, M.F., Rosales, E.P., Zawoznik, M.S., Benavides, M.P., Unravelling cadmium toxicity and tolerance in plants: Insight into regulatory mechanisms (2012) Environmental and Experimental Botany, 83, pp. 33-46. , 1:CAS:528:DC%2BC38XnvFOrsbo%3D García, V., Godoy, P., Daniels, C., Hurtado, A., Ramos, J.L., Segura, A., Functional analysis of new transporters involved in stress tolerance in Pseudomonas putida DOT-T1E (2010) Environmental Microbiology Reports, 2, pp. 389-395 Gharieb, M.M., Gadd, G.M., Role of glutathione in detoxification of metal(loid)s by Saccharomyces cerevisiae (2004) Biometals, 17, pp. 183-188. , 1:CAS:528:DC%2BD2cXhslGju7g%3D Ghelfi, A., Gaziola, S.A., Cia, M.C., Chabregas, S.M., Falco, M.C., Kuser-Falcão, P.R., Azevedo, R.A., Cloning, expression, molecular modelling and docking analysis of glutathione transferase from Saccharum officinarum (2011) Annals of Applied Biology, 159, pp. 267-280. , 1:CAS:528:DC%2BC3MXht1eju77K Giannopolitis, C.N., Ries, S.K., Superoxide dismutases (1977) Plant Physiology, 59, pp. 309-314. , 1:CAS:528:DyaE2sXhtlKgtrs%3D Goupil, P., Souguir, D., Ferjani, E., Faure, O., Hitmi, A., Ledoigt, G., Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution (2009) Journal of Plant Physiology, 166, pp. 1446-1452. , 1:CAS:528:DC%2BD1MXhtVGhsL7J Gratão, P.L., Polle, A., Lea, P.J., Azevedo, R.A., Making the life of heavy metal-stressed plants a little easier (2005) Functional Plant Biology, 32, pp. 481-494 Gratão, P.L., Monteiro, C.C., Antunes, A.M., Peres, L.E.P., Azevedo, R.A., Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress (2008) Annals of Applied Biology, 153, pp. 321-333 Gratão, P.L., Monteiro, C.C., Rossi, M.L., Martinelli, A.P., Peres, L.E.P., Medici, L.O., Lea, P.J., Azevedo, R.A., Differential ultrastructural changes in tomato hormonal mutants exposed to cadmium (2009) Environmental and Experimental Botany, 67, pp. 387-394 Gratão, P.L., Monteiro, C.C., Carvalho, R.F., Tezotto, T., Piotto, F.A., Peres, L.E.P., Azevedo, R.A., Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions (2012) Plant Physiology and Biochemistry, 56, pp. 79-96 Green, J., Paget, M., Bacterial redox sensors (2004) Nature Reviews Microbiology, 2, pp. 954-967. , 1:CAS:528:DC%2BD2cXpvFWrs74%3D Guelfi, A., Azevedo, R.A., Lea, P.J., Molina, S.M.G., Growth inhibition of the filamentous fungus Aspergillus nidulans by cadmium: An antioxidant enzyme approach (2003) Journal of General and Applied Microbiology, 49, pp. 63-73. , 1:CAS:528:DC%2BD3sXlvVCisbo%3D Guo, J., Xu, L., Su, Y., Wang, H., Gao, S., Xu, J., Que, Y., ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation (2013) BioMedical Research International, 2013, p. 904769 Harrison, J.J., Tremaroli, V., Stan, M.A., Chan, C.S., Vacchi-Suzzi, C., Heyne, B.J., Parsek, M.R., Turner, R.J., Chromosomal antioxidant genes have metal ion-specific roles as determinants of bacterial metal tolerance (2009) Environmental Microbiology, 11, pp. 2491-2509. , 1:CAS:528:DC%2BD1MXhtlKisLzJ Hazen, T.C., Tabak, H.H., Developments in bioremediation of soils and sediments polluted with metals and radionuclides: 2. Field research on bioremediation of metals and radionuclides (2005) Reviews in Environmental Science and Bio/Technology, 4, pp. 157-183. , 1:CAS:528:DC%2BD28XitVSmt7c%3D Helbig, K., Bleuel, C., Krauss, G.J., Nies, D.H., Glutathione and transition-metal homeostasis in Escherichia coli (2008) Journal of Bacteriology, 190, pp. 5431-5438. , 1:CAS:528:DC%2BD1cXpt1Wiur0%3D Helbig, K., Grosse, C., Nies, D.H., Cadmium toxicity in glutathione mutants of Escherichia coli (2008) Journal of Bacteriology, 190, pp. 5439-5454. , 1:CAS:528:DC%2BD1cXpt1Wiuro%3D Hu, P., Brodie, E.L., Suzuki, Y., McAdams, H.H., Andersen, G.L., Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus (2005) Journal of Bacteriology, 187, pp. 8437-8449. , 1:CAS:528:DC%2BD2MXhtlalsL%2FK Jin, Z.M., Sha, W., Zhang, Y.F., Zhao, J., Ji, H., Isolation of Burkholderia cepacia JB12 from lead- and cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover (2013) Canadian Journal of Microbiology, 59, pp. 449-455. , 1:CAS:528:DC%2BC3sXhtVSht7%2FP Kabata-Pendias, A., Pendias, H., (2001) Trace Elements in Soils and Plants, p. 432p. , 3 CRC Boca Raton Kanazawa, S., Mori, K., Isolation of cadmium-resistant bacteria and their resistance mechanisms (1996) Soil Science and Plant Nutrition, 42, pp. 725-730. , 1:CAS:528:DyaK2sXitlOqtQ%3D%3D Khan, S., Hesham, A.E., Qiao, M., Effects of Cd and Pb on soil microbial community structure and activities (2010) Environmental Science and Pollution Research, 17, pp. 288-296. , 1:CAS:528:DC%2BC3cXovVChtg%3D%3D Khonsue, N., Kittisuwan, K., Kumsopa, A., Tawinteung, N., Prapagdee, B., Inoculation of soil with cadmium-resistant bacteria enhances cadmium phytoextraction by Vetiveria nemoralis and Ocimum gratissimum (2013) Water, Air, and Soil Pollution, 224, p. 1696 Kim, Y.O., Patel, D.H., Lee, D.S., Song, Y., Bae, H.J., High cadmium-binding ability of a novel Colocasia esculenta metallothionein increases cadmium tolerance in Escherichia coli and tobacco (2011) Bioscience Biotechnology and Biochemistry, 75, pp. 1912-1920. , 1:CAS:528:DC%2BC3MXhsVWiu7jO Kraus, T.E., McKersie, B.D., Fletcher, R.A., Paclobutrazol-induced tolerance of wheat leaves to paraquat may involve increased antioxidant enzyme activity (1995) Journal of Plant Physiology, 145, pp. 570-576. , 1:CAS:528:DyaK2MXks12gtLk%3D Kukier, U., Chaney, R.L., Ryan, J.A., Daniels, W.L., Dowdy, R.H., Granato, T.C., Phytoavailability of cadmium in long-term biosolids-amended soils (2010) Journal of Environmental Quality, 39, pp. 519-530. , 1:CAS:528:DC%2BC3cXjsFCquro%3D Kumar, K.V., Patra, D.D., Influence of nickel and cadmium resistant PGPB on metal accumulation and growth responses of Lycopersicon esculentum plants grown in fly ash amended soil (2013) Water, Air, and Soil Pollution, 224, p. 1357 Laemmli, U., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685. , 1:CAS:528:DC%2BD3MXlsFags7s%3D Larossa, R.A., Smulski, D.R., Dyk, T.K.V., Interaction of lead nitrate and cadmium chloride with Escherichia coli K-12 and Salmonella typhimurium global regulatory mutants (1995) Journal of Industrial Microbiology, 14, pp. 252-258. , 1:CAS:528:DyaK2MXmt1Wjt7c%3D Leverrier, P., Montigny, C., Garrigos, M., Champeil, P., Metal binding to ligands: Cadmium complexes with glutathione revisited (2007) Analytical Biochemistry, 371, pp. 215-228. , 1:CAS:528:DC%2BD2sXht1GlurnM Li, N., Li, Z., Fu, Q., Zhuang, P., Guo, B., Li, H., Agricultural technologies for enhancing the phytoremediation of cadmium-contaminated soil by Amaranthus hypochondriacus L (2013) Water, Air, and Soil Pollution, 224, p. 1673 Lima, A.I.G., Corticeiro, S.C., Figueira, E., Glutathione-mediated cadmium sequestration in Rhizobium leguminosarum (2006) Enzyme and Microbial Technology, 39, pp. 763-769. , 1:CAS:528:DC%2BD28XmtFSjtr8%3D Luvizotto, D.M., Marcon, J., Andreote, F.D., Dini-Andreote, F., Neves, A.A.C., Araújo, W.L., Pizzirani-Kleiner, A.A., Genetic diversity and plant-growth related features of Burkholderia spp. from sugarcane roots (2010) World Journal of Microbiology and Biotechnology, 26, pp. 1829-1836. , 1:CAS:528:DC%2BC3cXhtFKls7fK Ma, X.X., Jiang, Y.L., He, Y.X., Bao, R., Chen, Y., Zhou, C.Z., Structures of yeast glutathione-S-transferase Gtt2 reveal a new catalytic type of GST family (2009) EMBO Reports, 10, pp. 1320-1326. , 1:CAS:528:DC%2BD1MXhtlSjur7E Madhaiyan, M., Poonguzhali, S., Sa, T., Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L) (2007) Chemosphere, 69, pp. 220-228. , 1:CAS:528:DC%2BD2sXovFOrsrw%3D Martins, P.F., Carvalho, G., Gratão, P.L., Dourado, M.N., Pileggi, M., Araújo, W.L., Azevedo, R.A., Effects of the herbicides acetochlor and metolachlor on antioxidant enzymes in soil bacteria (2011) Process Biochemistry, 46, pp. 1186-1195. , 1:CAS:528:DC%2BC3MXjvFWjtrw%3D Masip, L., Veeravalli, K., Georgiou, G., The many faces of glutathione in bacteria (2006) Antioxidants & Redox Signaling, 8, pp. 753-762. , 1:CAS:528:DC%2BD28XlsFOntbk%3D Medici, L.O., Azevedo, R.A., Smith, R.J., Lea, P.J., The influence of nitrogen supply on antioxidant enzymes in plant roots (2004) Functional Plant Biology, 31, pp. 1-9. , 1:CAS:528:DC%2BD2cXmvVGgtQ%3D%3D Milioni, D., Hatzopoulos, P., Genomic organization of hsp90 gene family in Arabidopsis (1997) Plant Molecular Biology, 35, pp. 955-961. , 1:CAS:528:DyaK1cXis1KhtA%3D%3D Miller, C.D., Pettee, B., Zhang, C., Pabst, M., McLean, J.E., Anderson, A.J., Copper and cadmium: Responses in Pseudomonas putida KT2440 (2009) Letters in Applied Microbiology, 49, pp. 775-783. , 1:CAS:528:DC%2BD1MXhs1Smtb%2FM Mobin, M., Khan, N.A., Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress (2007) Journal of Plant Physiology, 164, pp. 601-610. , 1:CAS:528:DC%2BD2sXlsVWlsbo%3D Monteiro, C.C., Carvalho, R.F., Gratão, P.L., Carvalho, G., Tezotto, T., Medici, L.O., Peres, L.E.P., Azevedo, R.A., Biochemical responses of the ethylene-insensitive Never ripe tomato mutant subjected to cadmium and sodium stresses (2011) Environmental and Experimental Botany, 71, pp. 306-320. , 1:CAS:528:DC%2BC3MXhvFWitbw%3D Muangchinda, C., Pansri, R., Wongwongsee, W., Pinyakong, O., Assessment of polycyclic aromatic hydrocarbon biodegradation potential in mangrove sediment from Don Hoi Lot, Samut Songkram Province, Thailand (2013) Journal of Applied Microbiology, 114, pp. 1311-1324. , 1:CAS:528:DC%2BC3sXlvFygt7w%3D Ouziad, F., Hildebrandt, U., Schmelzer, E., Bothe, H., Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress (2005) Journal of Plant Physiology, 162, pp. 634-649. , 1:CAS:528:DC%2BD2MXntVSmt7Y%3D Pacheco, C.C., Passos, J.F., Castro, A.R., Moradas-Ferreira, P., De Marco, P., Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12 (2008) Archives of Microbiology, 189, pp. 271-278. , 1:CAS:528:DC%2BD1cXhvFOkurY%3D Parra-Cota, F. I., Burkholderia ambifaria and B. caribensis promote growth and increase yield in grain amaranth (Amaranthus cruentus and A. hypochondriacus) by improving plant nitrogen uptake (2014) PLoS One, 12 (2), p. e88094. , 9 Paungfoo-Lonhienne, C., Lonhienne, T.G., Yeoh, Y.K., Webb, R.I., Lakshmanan, P., Chan, C.X., Lim, P.E., Hugenholtz, P., A new species of Burkholderia isolated from sugarcane roots promotes plant growth (2014) Microbial Biotechnology, 7, pp. 142-154. , 1:CAS:528:DC%2BC2cXisleltrs%3D Perin, L., Martnez-Aguilar, L., Castro-Gonzalez, R., Estrada-De Los Santos, P., Cabellos-Avelar, T., Guedes, H.V., Reis, V.M., Caballero-Mellado, J., Diazotrophic Burkholderia species associated with field-grown maize and sugarcane (2006) Applied and Environmental Microbiology, 72, pp. 3103-3110. , 1:CAS:528:DC%2BD28XkvFSqtbc%3D Pilon-Smits, E., Phytoremediation (2005) Annual Review of Plant Biology, 56, pp. 15-39. , 1:CAS:528:DC%2BD2MXmtVarurc%3D Pizzaia, D., (2013) Genotoxicidade Do Cádmio em Tomateiro (Solanum Lycopersicum L.), p. 98p. , Thesis (PhD in Genetics and Plant Breeding) - Escola Superior de Agricultura "Luiz de Queiroz". Universidade de São Paulo, Piracicaba Poupin, M. J., Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana (2013) PLoS One, 15 (7), p. e69435. , 8 Rehman, A., Anjum, M.S., Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: Glutathione as detoxifying agent (2011) Environmental Monitoring and Assessment, 174, pp. 585-595. , 1:CAS:528:DC%2BC3MXht12gsLo%3D Rodrigues, V.D., Martins, P.F., Gaziola, S.A., Azevedo, R.A., Ottoboni, L.M.M., Antioxidant enzyme activity in Acidithiobacillus ferrooxidans LR maintained in contact with chalcopyrite (2010) Process Biochemistry, 45, pp. 914-918. , 1:CAS:528:DC%2BC3cXlt1Ciu74%3D Rossbach, S., Mai, D.J., Carter, E.L., Sauviac, L., Capela, D., Bruand, C., De Bruijn, F.J., Response of Sinorhizobium meliloti to elevated concentrations of cadmium and zinc (2008) Applied and Environmental Microbiology, 74, pp. 4218-4221. , 1:CAS:528:DC%2BD1cXot1OmtLk%3D Saier, Jr.M.H., Trevors, J.T., Phytoremediation (2010) Water, Air, and Soil Pollution, 205 (1), pp. 61-S63 Sangali, S., Brandelli, A., Feather keratin hydrolysis by a Vibrio sp. strain kr2 (2000) Journal of Applied Microbiology, 89, pp. 735-743. , 1:CAS:528:DC%2BD3cXos1Oqt7k%3D Sathyapriya, H., Sariah, M., Akmar, A.S.N., Wong, M., Root colonisation of Pseudomonas aeruginosa strain UPMP3 and induction of defence-related genes in oil palm (Elaeis guineensis) (2012) Annals of Applied Biology, 160, pp. 137-144. , 1:CAS:528:DC%2BC38XlsV2rsLo%3D Schwager, S., Lumjiaktase, P., Stöckli, M., Weisskopf, L., Eberl, L., The genetic basis of cadmium resistance of Burkholderia cenocepacia (2012) Environmental Microbiology Reports, 4, pp. 562-568. , 1:CAS:528:DC%2BC3sXhslSmtQ%3D%3D Scrutton, N.S., Berry, A., Perham, R.N., Purification and characterization of glutathione reductase encoded by a cloned and over-expressed gene in Escherichia coli (1987) Biochemical Journal, 245, pp. 875-880. , 1:CAS:528:DyaL2sXkvFamsro%3D Seidel, H., Löser, C., Zehnsdorf, A., Hoffmann, P., Schmerold, R., Bioremediation process for sediments contaminated by heavy metals: Feasibility study on a pilot scale (2004) Environmental Science & Technology, 38, pp. 1582-1588. , 1:CAS:528:DC%2BD2cXls1ersg%3D%3D Shen, J.J., Qiao, Z.J., Xing, T.J., Zhang, L.P., Liang, Y.L., Jin, Z.P., Yang, G.D., Pei, Y.X., Cadmium toxicity is alleviated by AtLCD and AtDCD in Escherichia coli (2012) Journal of Applied Microbiology, 113, pp. 1130-1138. , 1:CAS:528:DC%2BC38XhsFWisrjM Singh, A., Jain, A., Sarma, B.K., Upadhyay, R.S., Singh, H.B., Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress (2013) Annals of Applied Biology, 163, pp. 33-46 Skopelitou, K., Dhavala, P., Papageorgiou, A.C., Labrou, N.E., A glutathione transferase from Agrobacterium tumefaciens reveals a novel class of bacterial GST superfamily (2012) PLoS ONE, 7, p. 34263. , 1:CAS:528:DC%2BC38Xls1Giu7Y%3D Smith, I.K., Vierheller, T.L., Thorne, C.A., Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis (2-nitrobenzoic acid) (1988) Analytical Biochemistry, 175, pp. 408-413. , 1:CAS:528:DyaL1MXltlCisw%3D%3D Souza, L.A., Piotto, F.A., Nogueirol, R.C., Azevedo, R.A., Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents (2013) Scientia Agricola, 70, pp. 290-295. , 1:CAS:528:DC%2BC3sXhs1SitrzF Tezotto, T., Favarin, J.L., Azevedo, R.A., Alleoni, L.R.F., Mazzafera, P., Coffee is highly tolerant to cadmium, nickel and zinc: Plant and soil nutritional status, metal distribution and bean yield (2012) Field Crops Research, 125, pp. 25-34 Thorsen, M., Perrone, G.G., Kristiansson, E., Traini, M., Ye, T., Dawes, I.W., Nerman, O., Tamás, M.J., Genetic basis of arsenite and cadmium tolerance in Saccharomyces cerevisiae (2009) BMC Genomics, 10, p. 105 Todorova, D., Nedeva, D., Abrashev, R., Tsekova, K., Cd (II) stress response during the growth of Aspergillus niger B 77 (2008) Journal of Applied Microbiology, 104, pp. 178-184. , 1:CAS:528:DC%2BD1cXisVOgsbs%3D Tombuloglu, H., Semizoglu, N., Sakcali, S., Kekec, G., Boron induced expression of some stress-related genes in tomato (2012) Chemosphere, 86, pp. 433-438. , 1:CAS:528:DC%2BC38XovFersw%3D%3D Valverde, A., Delvasto, P., Peix, A., Velázquez, E., Santa-Regina, I., Ballester, A., Rodríguez-Barrueco, C., Igual, J.M., Burkholderia ferrariae sp. Nov., isolated from an iron ore in Brazil (2006) International Journal of Systematic and Evolutionary Microbiology, 56, pp. 2421-2425. , 1:CAS:528:DC%2BD28Xht1WntbbI Vitória, A.P., Da Cunha, M., Azevedo, R.A., Ultrastructural changes of radish leaf exposed to cadmium (2006) Environmental and Experimental Botany, 58, pp. 47-52 Vivas, A., Barea, J.M., Azcón, R., Brevibacillus brevis isolated from cadmium- or zinc-contaminated soils improves in vitro spore germination and growth of Glomus mosseae under high Cd or Zn concentrations (2005) Microbial Ecology, 49, pp. 416-424. , 1:CAS:528:DC%2BD2MXmt1ensb8%3D Wahid, A., Ghani, A., Varietal differences in mungbean (Vigna radiata) for growth, yield, toxicity symptoms and cadmium accumulation (2008) Annals of Applied Biology, 152, pp. 59-69. , 1:CAS:528:DC%2BD1cXjt1ylsb8%3D Wang, X., Song, Y., Ma, Y., Zhuo, R., Jin, L., Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.) (2011) Environmental Pollution, 159, pp. 3627-3633. , 1:CAS:528:DC%2BC3MXht12gsLjL Wei, G., Fan, L., Zhu, W., Fu, Y., Yu, J., Tang, M., Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China (2009) Journal of Hazardous Materials, 162, pp. 50-56. , 1:CAS:528:DC%2BD1cXhsV2iu7vE Woodbury, W., Spencer, A., Stahman, M., Improved procedure using ferricyanide for detecting catalase isozymes (1971) Analytical Biochemistry, 547, pp. 301-305 Xia, J.-L., Wu, S., Zhang, R., Zhang, C., He, H., Jiang, H., Nie, Z., Qiu, G., Effects of copper exposure on expression of glutathione-related genes in Acidithiobacillus ferrooxidans (2011) Current Microbiology, 62, pp. 1460-1466. , 1:CAS:528:DC%2BC3MXktFSqsr0%3D Zhu, H., Guo, J., Chen, M., Feng, G., Yao, Q., Burkholderia dabaoshanensis sp. Nov., a heavy-metal-tolerant bacteria isolated from Dabaoshan mining area soil in China (2012) PLoS One, 7, p. 50225. , 1:CAS:528:DC%2BC38XhvVyisLzM