dc.creator | Gutierrez C. | |
dc.creator | Guadalupe I. | |
dc.creator | Tribuzy R. | |
dc.creator | Guinez V. | |
dc.date | 1997 | |
dc.date | 2015-06-30T14:47:33Z | |
dc.date | 2015-11-26T15:02:53Z | |
dc.date | 2015-06-30T14:47:33Z | |
dc.date | 2015-11-26T15:02:53Z | |
dc.date.accessioned | 2018-03-28T22:13:47Z | |
dc.date.available | 2018-03-28T22:13:47Z | |
dc.identifier | | |
dc.identifier | Bulletin Of The Brazilian Mathematical Society. , v. 28, n. 2, p. 233 - 251, 1997. | |
dc.identifier | 1003569 | |
dc.identifier | | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-0001114246&partnerID=40&md5=43be6605f645844190c9c51775730fb0 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/99989 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/99989 | |
dc.identifier | 2-s2.0-0001114246 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1256487 | |
dc.description | The differential equation of the lines of curvature for immersions of surfaces into ℝ4 is established. It is shown that, for a class of generic immersions of a surface into ℝ4 in the Cr-topology, r ≥ 4, all of the umbilic points are locally topologically stable. This type of umbilic points is described. © 1997, Sociedade Brasileira de Matemática. | |
dc.description | 28 | |
dc.description | 2 | |
dc.description | 233 | |
dc.description | 251 | |
dc.description | Burnside, W.S., Panton, A.W., (1912) The Theory of Equations, , [B-P] Dover Publications, Inc. New York | |
dc.description | Guadalupe, I., Gutiérrez, C., Sotomayor, J., Tribuzy, R., Principal Lines on Surfaces Minimally Immersed in Constantly Curved 4-spaces (1987) Dynamical Systems and Bifurcation Theory, Pitman Research Notes in Mathematics Series, 160, pp. 91-120. , [GGST] | |
dc.description | Gutierrez, C., Sotomayor, J., Principal Lines on Surfaces Immersed with Constant Mean Curvature (1986) Trans, of the Ame. Math. Soc., 293 (2), pp. 751-766. , [G-S] | |
dc.description | Jacobowitz, H., The Gauss-Codazzi Equations (1982) Tensor, N., S., 39, pp. 15-22. , [Jac] | |
dc.description | Little, J.A., On Singularities of Submanifolds of a Higher Dimensional Euclidean Space (1969) Ann. Mat. Pura App., 83, pp. 261-335. , [Lit] | |
dc.description | Palis, J., De Melo, W., (1982) Geometric Theory of Dynamical Systems, , [M-P] Springer-Verlag | |
dc.description | Ramírez-Galarza, A., Sánchez-Bringas, F., Lines of Curvature near Umbilic Points on Surfaces Immersed in ℝ4 (1995) Annals of Global Analysis and Geometry, 13, pp. 129-140. , [R-S] | |
dc.description | Spivak, M., (1979) A Comprehensive Introduction to Differential Geometry, 5. , [Spi] Publish or Perish Inc., Berkeley | |
dc.language | en | |
dc.publisher | | |
dc.relation | Bulletin of the Brazilian Mathematical Society | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Lines Of Curvature On Surfaces Immersed In ℝ4 | |
dc.type | Artículos de revistas | |