Artículos de revistas
Diffraction Enhanced Imaging And X-ray Fluorescence Microtomography For Analyzing Biological Samples
Registro en:
X-ray Spectrometry. , v. 36, n. 4, p. 247 - 253, 2007.
498246
10.1002/xrs.973
2-s2.0-34547394384
Autor
Rocha H.S.
Pereira G.R.
Anjos M.J.
Faria P.
Kellermann G.
Perez C.A.
Tirao G.
Mazzaro I.
Giles C.
Lopes R.T.
Institución
Resumen
In this work, breast tissue samples were investigated in order to verify the distribution of certain elements by x-ray fluorescence computed tomography (XRFCT) correlated with the characteristics and pathology of each tissue observed by diffraction enhanced imaging (DEI). The DEI system can show details in low attenuation tissues. It is based on the contrast imaging obtained by extinction, diffraction and refraction characteristics and can improve reduction in false positive and false negative diagnoses. XRFCT allows mapping of all elements within the sample, since even a minute fluorescence signal can be detected. DEI imaging techniques revealed the complex structure of the disease, confirmed by the histological section, and showed microstructures in all planes of the sample. The XRFCT showed the distribution of Zn, Cu and Fe at higher concentration. Copyright © 2007 John Wiley & Sons, Ltd. 36 4 247 253 Allonzi, A.M., Noia, A.L.C., Martins, L.F.L., Thuler, L.C.S., Santos, M.O., Alvez, M.R.D., Rebelo, M.S., Figueiredo, V., (2002) Atlas de Mortalidade por câncer no Brasil 1979-1999, p. 412. , INCA: Rio de Janeiro, In Portugese Fitzgerald, R., (2000) Phys. Today, 53, p. 23 Pisano, D., Johnston, E., Chapman, D., Geradts, J., Lacocca, M.V., Livasy, C.A., Washburn, D.B., Thomlinson, W., (2000) Radiology, 214, p. 895 Bushuev, V.A., Ingal, V.N., Beliaevskaya, E.A., (1998) Crystallogr. Rep, 43, p. 538 Momose, A., (1995) Nucl. Instrum. Methods Phys, , A 352: 622 Wilkins, S.W., Gureyev, T.E., Gao, D., Pogany, A., Stevenson, A.W., (1996) Nature, 384, p. 335 Wu, X., Liu, H., (2004) Med. Phys, 31, p. 997 Bravin, A., (2003) J. Phys. D: Appl. Phys, 36, pp. A24 Chapman, D., Thomlinson, W., Arfelli, F., (1995) Rev. Sci. Instrum, p. 67. , CD Suppl, doi:10.1063/1.1147502 Chapman, D., Thomlinson, W., Johnston, R., (1997) Phys. Med. Biol, 42, p. 2015 Geraki, K., Farquharson, M.J., Bradley, D.A., (2004) Phys. Med. Biol, 49, p. 1 Wu, T., Sempos, C.T., Freudenheim, J.L., (2004) Ann. Epidemiol, 14 (3), p. 195 Hasnah, M., Oltulu, O., Zhong, Z., Chapman, D., (2002) Rev. Sci. Instrum, 73, p. 1657. , doi: 10.1063/1.1445831 Lagomarsino, S., Cedola, A., X-ray microscopy and nanodiffraction (2004) Encyclopedia of Nanoscience and Nanotechnology, 10, p. 681. , American Scientific Publishers: Stevenson Ranch, CA, USA Ingal, V.N., Beliaevskaya, E.A., (1995) J. Phys. D: Appl. Phys, 28, p. 2314 Davis, T.J., Gao, D., Gureyev, T.E., Stevenson, A.W., Wilkins, S.W., (1995) Nature, 373, p. 595 Menk, R.H., Rigon, L., Arfelli, F., (2005) Nucl. Instrum. Methods Phys. Res. A, 548, p. 213 Khelashvili, G., Brankov, J.G., Chapman, D., Anastasio, M.A., Yang, Y., Zhong, O.Z., Wernick, M.N., (2006) Phys. Med. Biol, 51, p. 221. , doi:10.1088/0031-9155/ 51/2/003 Wernick, M.N., Wirjadi, O., Chapman, D., Zhong, O.Z., Galatsanos, N., Yang, Y., Brankov, J.G., Muehleman, C., (2003) Phys. Med. Biol, 48, p. 3875. , doi:10.1088/0031-9155/48/23/006 Dilmanian, F., Zhong, Z., Ren, B., Wu, X., Chapman, L., Orion, I., Thomlinson, W., (2000) Phys. Med Biol, 45, p. 933. , doi:10.1088/0031-9155/45/4/309 Zhong Z, Thomlinson W, Chapman D, Sayers D. Nucl. Instrum. Methods Phys. Res. A. 2000 A 450: 556 [doi:10.1016/S0168-9002(00)00308-9]Rigon L, Besch H, Arfelli F, et al. J. Phys. D: Appl. Phys. 2003 36: A107 [doi:10.1088/0022-3727/36/10A/322]Giles, C., Hönnicke, M.G., Lopes, R.T., Rocha, H.S., Gonçalves, O.D., Mazzaro, I., Cusatis, C., (2003) J. Synchrotron Radiat, 10, p. 421 Rocha, H.S., Lopes, R.T., Valiante, P.M., Tirao, G., (2005) Nucl. Instrum. Methods Phys. Res. A, 548, p. 175. , doi:10.1016/j.nima.2005.03.086 Hönnicke, M., Foerster, L.A., Navarro-Silva, M.A., Menk, R.H., (2005) Nucl. Instrum. Methods Phys. Res. A, 548. , 207 [doi:10.1016/j.nima, 03.091 Rocha, H.S., Lopes, R.T., Pessôa, L.M., Hönnicke, M.G., (2005) Nucl. Instrum. Methods Phys. Res. A, 548. , 228 [doi:10.1016/j.nima, 03.094 Connor, D.M., Sayers, D., Sumner, D.R., Zhong, Z., (2005) Nucl. Instrum. Methods Phys. Res. A, 548, p. 234 Farquarson, M.J., Geraki, K., (2004) X-Ray Spectrom, 33, p. 240. , doi: 10.1002/xrs.684 Chwiej, J., Sczerbowska-Boruchowska, M., Lankosz, M., (2005) Spectrochim. Acta, Part B, 60, p. 1531 Braz, D., Motta, L.M.G., Lopes, R.T., (1999) Appl. Radiat, Isot, 50, p. 661 Lopes, R.T., Rocha, H.S., Jesus, E.F.O., Barroso, R.C., (2003) Nucl. Instrum. Methods Phys. Res. A, , A 505: 604 [doi:10.1016/S0168-9002(03) 01157-4 Cesareo, R., Mascarenhas, S., (1989) Nucl. Instrum. Methods, , A 277: 669 [doi:10.1016/0168-9002(89)90802-4 Naghedolfeizi, M., Chung, J.-S., Morris, R., Ice, G.E., Yun, W.B., Cai, Z., Lai, B., (2003) J. Nucl. Mater, 312, p. 146 Hogan, J.P., Gonsalves, R.A., Krieger, A.S., (1991) IEEE Trans. Nucl. Sci, 38, p. 1721