dc.creatorOliveira Jr. M.H.
dc.creatorBarbieri P.F.
dc.creatorTorriani I.L.
dc.creatorMarques F.C.
dc.date2007
dc.date2015-06-30T18:41:12Z
dc.date2015-11-26T15:02:15Z
dc.date2015-06-30T18:41:12Z
dc.date2015-11-26T15:02:15Z
dc.date.accessioned2018-03-28T22:13:10Z
dc.date.available2018-03-28T22:13:10Z
dc.identifier
dc.identifierThin Solid Films. , v. 516, n. 02/04/15, p. 316 - 319, 2007.
dc.identifier406090
dc.identifier10.1016/j.tsf.2007.06.081
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-36049000168&partnerID=40&md5=0dbf57ebc8ffd58910657861062482f7
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/104346
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/104346
dc.identifier2-s2.0-36049000168
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256416
dc.descriptionWe report on the study of amorphous carbon films using the small angle X-ray scattering (SAXS) technique. The films were deposited by ion beam assisted deposition at different assisting ion energies, ranging from 50 eV to 200 eV. The film density was determined by Rutherford back-scattering (RBS) and the film thickness was measured by a stylus profilometer. The film density increases as the assisting ion energy used during deposition increases. Small angle X-ray scattering results revealed large scatter centers within the matrix, increasing in size with assisting ion energy. The mean distance between those centers was found to be about 2.5 nm independent of the deposition conditions. The gyration radius (Rg) is in the 18 nm to 25 nm range, while the film is about 100 nm thick. © 2007 Elsevier B.V. All rights reserved.
dc.description516
dc.description02/04/15
dc.description316
dc.description319
dc.descriptionRobertson, J., (2001) Phys. Status Solidi, A Appl. Res., 186, p. 177
dc.descriptionPotter, D.I., Rossouw, C.J., (1989) J. Nucl. Mater. Sci., 161, p. 124
dc.descriptionVom Felde, A., Fink, J., Müller-Heinzerling, Th., Pflüger, J., Scheerer, B., Linker, G., Kaletta, D., (1984) Phys. Rev. Lett., 53, p. 922
dc.descriptionTempler, C., Garem, H., Riviere, J.P., Delafond, J., (1986) Nucl. Instrum. Methods Phys. Res., B Beam Interact. Mater. Atoms, 18, p. 24
dc.descriptionTempler, C., Garem, H., Riviere, J.P., (1986) Philos. Mag., A, 53, p. 667
dc.descriptionFaraci, G., Pennisi, A.R., Terrasi, A., (1988) Phys. Rev., B, 38, p. 13468
dc.descriptionLacerda, R.G., dos Santos, M.C., Tessler, L.R., Alvarez, F., Marques, F.C., (2003) Phys. Rev., B, 68, p. 054104
dc.descriptionStoney, G.C., (1909) Proc. R. Soc. Lond., A, 32, p. 172
dc.descriptionLifshitz, Y., Lempert, G.D., Grossman, E., Avigal, I., Uzan-Saguy, C., Kalish, R., Kulik, J., Rabais, J.W., (1995) Diamond Relat. Mater., 4, p. 318
dc.descriptionFallon, P.J., Veerasamy, V.S., Davis, C.A., Robertson, J., Amaratunga, G.A.J., Milne, W.I., Koskinen, J., (1993) Phys. Rev., B, 48, p. 4777
dc.descriptionJacobsohn, L.G., Capote, G., Maia as Costa, M.E.H., Franceschini, D.F., Freire Jr., F.L., (2002) Diamond Rel. Mater., 11, p. 1946
dc.descriptionSvergun, D.I., (1992) J. Appl. Crystallogr., 25, p. 495
dc.descriptionGlatter, O., Kratky, O., (1982) Small Angle X-ray Scattering, , Academic Press, London
dc.descriptionHalgren, T.A., Gadzuk, J.W., Herbst, J.F., (1978) Phys. Rev. Lett., 41, p. 583
dc.descriptionRobertson, J., O'Reilly, E.P., (1987) Phys. Rev., B, 35, p. 2946
dc.languageen
dc.publisher
dc.relationThin Solid Films
dc.rightsfechado
dc.sourceScopus
dc.titleSaxs Analysis Of Graphitic Amorphous Carbon
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución