dc.creatorBortoloti J.A.
dc.creatorBorges C.N.
dc.creatorBruns R.E.
dc.date2005
dc.date2015-06-26T14:06:02Z
dc.date2015-11-26T15:00:34Z
dc.date2015-06-26T14:06:02Z
dc.date2015-11-26T15:00:34Z
dc.date.accessioned2018-03-28T22:11:49Z
dc.date.available2018-03-28T22:11:49Z
dc.identifier
dc.identifierAnalytica Chimica Acta. , v. 544, n. 1-2 SPEC. ISS., p. 206 - 212, 2005.
dc.identifier32670
dc.identifier10.1016/j.aca.2005.01.021
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-20444436000&partnerID=40&md5=62732cce252772517aca500990d3f77c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93053
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93053
dc.identifier2-s2.0-20444436000
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256171
dc.descriptionAn approximate procedure based on normal probability graphs for selecting significant parameters of models calculated from the results of split-plot designs is proposed. Its application can result in a substantial reduction in the number of experiments that need to be performed. The method is applied to three split-plot design results for real data reported in the literature: (1) three plasticizer mixture components with different extrusion rates and drying temperatures, (2) three fish pattie ingredients at different cooking and frying temperature and times and (3) Cr(VI) catalytic determinations employing three reagents of varying concentrations and three solvent components of varying proportions. Approximate models determined from the proposed procedure are compared with those determined using complete split-plot ANOVA analyses. The robustness of the procedure is tested for one of the split-plot design results using replication, main-plot error and sub-plot error variance estimates that change according to a 23 factorial design. © 2005 Elsevier B.V. All rights reserved.
dc.description544
dc.description1-2 SPEC. ISS.
dc.description206
dc.description212
dc.descriptionCornell, J.A., (1988) J. Qual. Technol., 20, p. 2
dc.descriptionCornell, J.A., (1971) J. Am. Stat. Assoc., 66, p. 42
dc.descriptionMontgomery, D.C., (1991) Design and Analysis of Experiments, , Wiley New York
dc.descriptionWooding, W.M., (1973) J. Qual. Technol., 5, p. 16
dc.descriptionReis, C., De Andrade, J.C., Bruns, R.E., Moran, R.C.C.P., (1998) Anal. Chim. Acta, 369, p. 269
dc.descriptionBortoloti, J.A., Bruns, R.E., De Andrade, J.C., Vieira, R.K., (2004) Chemom. Intell. Lab. Syst., 70, p. 113
dc.descriptionCornell, J.A., Gorman, J.W., (1984) J. Qual. Technol., 16, p. 20
dc.descriptionBox, G.E.P., Hunter, W.G., Hunter, J.S., (1978) Statistics for Experimenters, , Wiley New York
dc.descriptionCornell, J.A., (1990) Experiments with Mixtures: Designs, Models and the Analysis of Mixture Data, , 2nd ed. Wiley New York
dc.descriptionNeto, B.B., Scarminio, I.S., Bruns, R.E., (2002) Como Fazer Experimentos, , 2nd ed. Editora da Unicamp Campinas, SP, Brazil
dc.descriptionStatistica for Windows, Version 6.0, , Statsoft Inc., Tulsa, OK, USA
dc.descriptionBox, G., Jones, S., (2000) Qual. Eng., 13, p. 127
dc.languageen
dc.publisher
dc.relationAnalytica Chimica Acta
dc.rightsfechado
dc.sourceScopus
dc.titleSplit-plot Designs And Normal Probability Graphs For The Optimization Of Chemical Systems
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución