dc.creatorLlibre J.
dc.creatorDa Silva P.R.
dc.creatorTeixeira M.A.
dc.date2009
dc.date2015-06-26T13:38:20Z
dc.date2015-11-26T15:00:21Z
dc.date2015-06-26T13:38:20Z
dc.date2015-11-26T15:00:21Z
dc.date.accessioned2018-03-28T22:11:39Z
dc.date.available2018-03-28T22:11:39Z
dc.identifier
dc.identifierSiam Journal On Applied Dynamical Systems. , v. 8, n. 1, p. 508 - 526, 2009.
dc.identifier15360040
dc.identifier10.1137/080722886
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-63049087849&partnerID=40&md5=92dace5c0ade4c24b632b0dffcf43842
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93023
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93023
dc.identifier2-s2.0-63049087849
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256152
dc.descriptionIn this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on Rl, l ≥ 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularizaron process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability. © 2009 Society for Industrial and Applied Mathematics.
dc.description8
dc.description1
dc.description508
dc.description526
dc.descriptionALEXANDER, J.C., SEIDMAN, T.I., Sliding modes in intersecting switching surfaces (1998) I. Blending, Houston J. Math, 24, pp. 545-569
dc.descriptionALEXANDER, J.C., SEIDMAN, T.I., Sliding modes in intersecting switching surfaces (1999) II. Hysteresis, Houston J. Math, 25, pp. 185-211
dc.descriptionBROUCKE, M., PUGH, C., SIMIC, S., Structural stability of piecewise smooth systems (2001) Comput. Appl. Math, 20, pp. 51-89
dc.descriptionBUZZI, C., SILVA, P.R., TEIXEIRA, M.A., A singular approach to discontinuous vector fields on the plane (2006) J. Differential Equations, 231, pp. 633-655
dc.descriptionDI BERNARDO, M., BUDD, C., CHAMPNEYS, A., KOWALCZYK, P., (2008) Piecewise-Smooth Dynamical Systems. Theory and Applications, , Appl. Math. Sci. 163, Springer-Verlag, London
dc.descriptionDUMORTIER, F., ROUSSARIE, R., Canard cycles and center manifolds (1996) Mem. Amer. Math. Soc, 121, p. 132708
dc.descriptionFENICHEL, N., Geometric singular perturbation theory for ordinary differential equations (1979) J. Differential Equations, 31, pp. 53-98
dc.descriptionFILIPPOV, A.F., (1988) Differential Equations with Discontinuous Righthand Sides, , Math. Appl, Soviet Ser, Kluwer Academic Publishers, Dordrecht, The Netherlands
dc.descriptionC. JONES, Geometric singular perturbation theory, in Dynamical Systems, C.I.M.E. Lectures (Montecatini Terme, 1994), Lecture Notes in Math. 1609, Springer-Verlag, Heidelberg, 1995, pp. 44-118LLIBRE, J., SILVA, P.R., TEIXEIRA, M.A., Regularization of discontinuous vector fields via singular perturbation (2007) J. Dynam. Differential Equations, 19, pp. 309-331
dc.descriptionLLIBRE, J., SILVA, P.R., TEIXEIRA, M.A., Sliding vector fields via slow-fast systems (2008) Bull. Belg. Math. Soc. Simon Stevin, 15, pp. 851-869
dc.descriptionLLIBRE, J., TEIXEIRA, M.A., Global asymptotic stability for a class of discontinuous vector fields in R2 (2007) Dyn. Syst, 22, pp. 133-146
dc.descriptionTEIXEIRA, M.A., Stability conditions for discontinuous vector fields (1990) J. Differential Equations, 88, pp. 15-29
dc.descriptionTEIXEIRA, M.A., Perturbation theory for non-smooth dynamical systems Encyclopedia of Complexity and Systems Science, , G. Gaeta, ed, Springer-Verlag, New York, to appear
dc.languageen
dc.publisher
dc.relationSIAM Journal on Applied Dynamical Systems
dc.rightsaberto
dc.sourceScopus
dc.titleStudy Of Singularities In Nonsmooth Dynamical Systems Via Singular Perturbation
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución