dc.creatorRincones J.
dc.creatorZeidler A.F.
dc.creatorGrassi M.C.B.
dc.creatorCarazzolle M.F.
dc.creatorPereira G.A.G.
dc.date2009
dc.date2015-06-26T13:38:28Z
dc.date2015-11-26T15:00:11Z
dc.date2015-06-26T13:38:28Z
dc.date2015-11-26T15:00:11Z
dc.date.accessioned2018-03-28T22:11:33Z
dc.date.available2018-03-28T22:11:33Z
dc.identifier
dc.identifierPolymer Reviews. , v. 49, n. 2, p. 85 - 106, 2009.
dc.identifier15583724
dc.identifier10.1080/15583720902834817
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-70349504375&partnerID=40&md5=c4452b272219f29523d4571855d74536
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/93043
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93043
dc.identifier2-s2.0-70349504375
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1256144
dc.descriptionThere is a common concept in life: large and complex molecules result from the synthesis of units that are later joined together. Mankind learned this principle and employed it to develop language, culture, and technology. This same principle is applied in the petrochemical industry by fractionating the fossilized carbon chains into small molecules and then polymerizing them in order to develop synthetic polymers, which are much more flexible, resistant, and durable than natural polymers. Recent developments in molecular biology have opened the possibility of modifying organisms in order to create new biosynthetic routes for the production of monomers that would fit the biggest challenge in modern society: the production of high quality polymers from renewable feedstocks. This review focuses on the latest advances in molecular biology and the new knowledge and technologies that enable the possibility of converting cells into efficient and sustainable chemical reactors. The first examples of this technological advancement are already in the market.
dc.description49
dc.description2
dc.description85
dc.description106
dc.descriptionMadsen, M., The role of biomass in the future global energy supply (2007) The 20th World Energy Congress, , http://vbn.aau.dk/fbspretrieve/14071392/ MichaelMadsenWECYouthProgrammepaper.pdf, (last accessed Sept. 2008)
dc.description(2007), http://nobelprize.org/nobelprizes/peace/laureates/2007/index.html, The Nobel Foundation (last accessed Sept. 2008)http://www.wasteonline.org.uk/resources/InformationSheets/Plastics.htm, (last accessed Sept. 2008)Stevens, E.S., What makes green plastics green? (2003) Biocycle, 44, pp. 24-27
dc.descriptionLee, S.Y., Hong, S.H., Lee, S.H., Park, S.J., Fermentative production of chemicals that can be used for polymer synthesis (2004) Macromol. Biosci., 4, pp. 157-164
dc.descriptionFutuyma, D.J., Progress on the Origin of Species (2005) PLoS Biol., 3, pp. 197-199
dc.descriptionWatson, J.D., Crick, F.H., The structure of DNA (1953) Cold SpringHarbor Symposia on Quantitative Biology, 18, pp. 123-131
dc.descriptionNirenberg, M., Caskey, C.T., Marshall, R., Brimacombe, R., Kellogg, D., Doctor, B., Hatfield, D., Anderson, F., The RNA code and protein synthesis (1966) Cold Spring Harbor Symposia on Quantitative Biology, 31, pp. 11-24
dc.descriptionCrick, F., Central dogma of molecular biology (1970) Nature, 227, pp. 561-563
dc.descriptionSmith, K.B., Genetic engineering - Techniques and potential (1976) Trends Biochem. Sci., , June 1976
dc.descriptionGoeddel, D.V., Kleid, D.G., Bolivar, F., Heyneker, H.L., Yansura, D.G., Crea, R., Hirose, T., Riggs, A.D., Expression in Escherichia coli of chemically synthesized genes for human insulin (1979) Proc. Natl. Acad. Sci., 79, pp. 106-110
dc.descriptionMaxam, A.M., Gilbert, W., A new method for sequencing DNA (1977) Proc. Natl. Acad. Sci., 74, pp. 560-564
dc.descriptionMullis, K., Fallona, F., Horng. Saikir., S.S., Erlich, H., Specific enzymatic amlification of DNA in vitro: The polymerase chain reaction (1986) Cold Spring Harbor Symposia on Quantitative Biology, 51, pp. 263-273
dc.descriptionLander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Naylor, J., Initial sequencing and analysis of the human genome (2001) Nature, 409, pp. 860-921
dc.descriptionHuman Genome Project Information, , http://www.ornl.gov/sci/techresources/HumanGenome/home.shtml, Genomics.energy.gov. (last accessed Sept. 2008)
dc.descriptionIdeker, T., Galitski, T., Hood, L., A new approach to decoding life: Systems Biology (2001) Annu. Rev. Genom. Hum. Genet., pp. 343-372
dc.descriptionHood, L., Galas, D., The digital code of DNA (2003) Nature, 421, pp. 444-448
dc.descriptionSanger, F., Nicklen, S., Coulson, A.R., DNA sequencing with chain-terminating inhibitors (1977) Proc. Natl. Acad. Sci., 74, pp. 5463-5467
dc.descriptionFleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, A.R., Kerlavage, A.R., Bult, C.J., Venter, J.C., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd (1995) Science, 269, pp. 496-512
dc.descriptionhttp://www.ncbi.nlm.nih.gov/sites/entrez?db=genome, Entrez Genome: (last accessed Oct. 2008)The EMBL Nucleotide Sequence Database, , http://www.ebi.ac.uk/embl/Services/DBStats/, Statistics: (last accessed Sept. 2008)
dc.descriptionChan, E.Y., Advances in sequencing technology (2005) Mutat. Res., 573, pp. 13-40
dc.descriptionMargulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Genome sequencing in microfabricated high-density picolitre reactors (2005) Nature, 437, pp. 376-380
dc.descriptionBentley, D.R., Whole-genome resequencing (2006) Curr. Opin. Genet., 16, pp. 545-552
dc.descriptionMorozova, O., Marra, M.A., Applications of next-generation sequencing technologies in functional genomics (2008) Genomics, 92, pp. 255-264
dc.descriptionShendure, J., Mitra, R.D., Varma, C., Church, G.M., Advanced sequencing technologies: Methods and goals (2004) Nat. Rev. Genet., 5, pp. 335-344
dc.descriptionAustin, C.P., The completed human genome: Implications for chemical biology (2003) Curr. Opin. Chem. Biol., 7, pp. 511-515
dc.descriptionSebaihia, M., Wren, B.W., Mullany, P., Fairweather, N.F., Minton, N., Stabler, R., Thomson, N.R., Parkhill, J., The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome (2006) Nat. Genet., 38, pp. 779-786
dc.descriptionMethe, B.A., Nelson, K.E., Eisen, J.A., Paulsen, I.T., Nelson, W., Heidelberg, J.F., Wu, D., Fraser, C.M., Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments (2003) Science, 302, pp. 1967-1969
dc.descriptionWeiner, R.M., Taylor, L.E., Henrissat, B., Hauser, L., Land, M., Coutinho, P.M., Rancurel, C., Hutcheson, S., Complete genome sequence of the complex carbohydrate-degradingmarine bacterium, Saccharophagus degradans strain 2-40(T) (2008) Plos Genet., 4, pp. e1000087
dc.descriptionPark, S.J., Lee, S.Y., Cho, J., Kim, T.Y., Lee, J.W., Park, J.H., Han, M.J., Global physiological understanding and metabolic engineering of microorganisms based on omics studies (2005) Appl. Microbiol. Biotechnol., 68, pp. 567-579
dc.descriptionJoyce, A.R., Palsson, B.O., The model organism as a system: Integrating 'omics' data sets (2006) Nature, 7, pp. 198-210
dc.descriptionPalsson, B., In silico biology through "omics" (2002) Nat. Biotechnol., 20, pp. 649-650
dc.descriptionIdeker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Integrated genomic and proteomic analyses of a systematically perturbed metabolic network (2001) Science, 292, pp. 929-934
dc.descriptionGe, H., Walhout, A.J.M., Vidal, M., Integrating 'omic' information: A bridge between genomics and systems biology (2003) Trends Genet., 19, pp. 551-560
dc.descriptionHobom, B., Gene surgery: On the threshold of synthetic biology (1980) Med. Klin., 21, pp. 834-841
dc.descriptionBenner, S.A., Sismour, A.M., Synthetic biology (2005) Nat. Rev. Genet., 6, pp. 533-543
dc.descriptionRuss, Z.N., Synthetic biology: Enormous possibility, exaggerated perils (2008) J. Biol. Eng., 2, pp. 1-3
dc.descriptionBailey, J.E., Toward a science of metabolic engineering 9 (1991) Science, 252, pp. 1668-1675
dc.descriptionhttp://parts2.mit.edu/wiki/index.php/MainPage, Massachusetts Institute of Technology. International Genetically Engineered CompetitionHome Page: (last accessed Sept. 2008)Endy, D., Foundations for engineering biology (2005) Nat. Rev., 438, pp. 449-453
dc.descriptionMajor progress announced in DNA synthesis (1984) Nucleic Acids Res., 12, p. 1. , Applied Biosystems
dc.descriptionhttp://www.jcvi.org/cms/research/projects/synthetic-bacterial-genome/ press-release/, Venter Institute Scientists Create First Synthetic Bacterial Genome: (last accessed Sept. 2008)Ro, D., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Keasling, J.D., Production of the antimalarial drug precursor artemisinic acid in engineered yeast (2006) Nature, 440, pp. 940-943
dc.descriptionhttp://www.wasteonline.org.uk/resources/InformationSheets/Plastics.htm, Plastic Recycling Information Sheet: (last accessed Sept. 2008)Luengo, J.M., Garcia, B., Sandoval, A., Naarro, G., Olivera, E.R., Bioplastics from microorganisms (2003) Curr. Opin. Microbiol., 6, pp. 251-260
dc.descriptionSteinbuchel, A., Hein, S., Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms (2001) Adv. Biochem. Eng. Biotechnol., 71, pp. 81-123
dc.descriptionKhanna, S., Srivastava, A.K., Recent advances in microbial polyhydroxyalkanoates (2005) Process Biochem., 40, pp. 607-619
dc.descriptionKalia, V.C., Lal, S., Cheema, S., Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: Horizontal gene transfer (2007) Gene, 389, pp. 19-26
dc.descriptionNonato, R., Mantelatto, P., Rossell, C., Integrated production of biodegradable plastic, sugar and ethanol (2001) Appl. Microbiol. Biotechnol., 57, pp. 1-5
dc.descriptionAnderson, A.J., Dawes, E.A., Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates (1990) Microbiol. Mol. Biol. Rev., 54, pp. 450-472
dc.descriptionBraunegg, G., Lefebrve, G., Genser, K.F., Polyhydroxyalkanoates, biopolyesters from renewable sources: Physiological and engineering aspects (1998) Journal of Biotechnology, 65, pp. 127-161
dc.descriptionSteinbuchel, A., Valentine, S.J., Diversity of bacterial polyhydroxyalkanoic acids (1995) FEMS Microbiology Letters, 128, pp. 219-228
dc.descriptionSuriyamongkol, P., Weselake, R., Narine, S., Moloney, M., Shah, S., Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review (2007) Biotechnol. Adv., 25, pp. 148-175
dc.descriptionChandra, R., Rustgi, R., Biodegradable Polymers (1998) Progr. Polym. Sci., 23, pp. 1273-1335
dc.descriptionChiellini, E., Solaro, R., Biodegradable polymeric materials (1996) Adv. Mater., 8, pp. 305-313
dc.descriptionWhat Is PSM?, , http://www.psm-hk.com/Eng/material.htm, (last accessed Feb. 2009)
dc.descriptionWhat Is PSM?, , http://www.psmna.com/whatispsm.html, (last accessed Sept. 2008)
dc.descriptionThe Miracles of Science.DuPont™Biomax® Sheet, Resins and Modifiers, , http://www2.dupont.com/Biomax/enUS/, (last accessed March 2009)
dc.descriptionBiodegradable Plastic Ever Corn TM, , http://www.japancornstarch.com/h13.html, (last accessed Feb. 2009)
dc.descriptionThe Renewable Plastic Cereplast Compostables and Cereplast Hybrid Resins, , http://www.cereplast.com/product.php, (last accessed Sept. 2008)
dc.descriptionChanging the Nature of Plastics, , http://www.plantic.com.au/ourtechnologies/capabilities/ starch-technologies/, Starch Technologies: (last accessed Feb. 2009)
dc.descriptionLong, Y., Coombs, S., Christie, G.B.Y., (2007) Biodegradable Polymer, , US20070148383
dc.descriptionEvstatiev, M., Polyamides (1997) Handbook of Thermoplastics, 1. , Olabisi, O., Eds., CRC Press:New York City
dc.descriptionhttp://www.arkema-inc.com/index.cfm?pag=109, Change reference to: "Arkema Inc. North America. Rilsan Polyamide 11 and 12: (last accessed Sept. 2008)Logan, L.R., Udesh, S.V., Method for Preparing Sebacic Acid and Octanol-2, , US Patent 6392074 B1
dc.descriptionOgunniyi, D.S., Castor oil: A vital industrial raw material (2006) Bioresour. Technol., 97, pp. 1086-1091
dc.descriptionhttp://www.plasticsportal.net/wa/plasticsEU?enGB/portal/show/common/ plasticsportalnews/2007/07450, BASF The Chemical Company. Polyamide from renewable raw materials: (last accessed Sept. 2008)http://www.plastemart.com/upload/Literature/specialpolyamides.asp, Special polyamides are expected to grow much faster than polyamide 6 & 6.6: (last accessed Feb. 2009)Wu, S., Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid: Characterization and biodegradability assessment (2005) Macromolecular Bioscience, 5, pp. 352-361
dc.description(1965) Preparation of Optically Active Lactides, , EI du Pont de Nemours&Co. Inc. UKPatent 1007347
dc.descriptionDe Vries, K.S., (1989) Preparation of Polylactic Acid and Copolymers of Lactic Acids, , US4797468
dc.descriptionMehta, R., Kumar, V., Bhunia, H., Upadhyay, S.N., Synthesis of poly(lactic acid): A review (2005) Polymer Rev., 45, pp. 325-349
dc.descriptionKowalski, A., Libiszowski, J., Duda, A., Penczeck, S., Polymerization of l,l-dilactide initiated by tin(II) butoxide (2000) Macromol., 36, pp. 1964-1971
dc.descriptionVenus, J., Richter, K., Production of lactic acid from barley: Strain selection, phenotypic and medium optimization (2006) Eng. Life Sci., 6, pp. 492-500
dc.descriptionDing, S., Tan, T., L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies (2006) Process Biochem., 41, pp. 1451-1454
dc.descriptionIshida, N., Saitoh, S., Onishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K., Takahashi, H., The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production (2006) Biosci. Biotech. Biochem., 70, pp. 1148-1153
dc.descriptionhttp://www.natureworksllc.com/, Ingeo, Ingenious materials. (last accessed Sept. 2008)Datta, R., Henry, M., Lactic acid: Recent advances in products, processes and technologies - A review (2006) J. Chem. Technol. Biotechnol., 81, pp. 1119-1129
dc.descriptionBiebl, H., Menzel, K., Zeng, A.P., Deckwer, W.D., Microbial production of 1,3-propanediol (1999) Appl. Microbiol. Biotechnol., 52, pp. 289-297
dc.descriptionHaveren, J.V., Scott, E.L., Sanders, J., Bulk chemicals from biomass (2008) BioFPR., 2, pp. 41-57
dc.descriptionNakamura, C.E., Whited, G.M., Metabolic engineering for the microbial production of 1,3- propanediol (2003) Curr. Opin. Biotechnol., 14, pp. 454-459
dc.descriptionAntoniewicz, M.R., Kraynie, D.F., Laffend, L.A., Gonzalez-Lergier, J., Kelleher, J.K., Stephanopoulos, G., Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol (2007) Metab. Eng., 9, pp. 277-292
dc.descriptionCao, N.J., Du, J.X., Chen, C.S., Gong, C.S., Tsao, G.T., Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor (1997) Appl. Biochem. Biotechnol., pp. 63-65. , 387-394
dc.descriptionVemuri, G.N., Eiteman, M.A., Altman, E., Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions (2002) J. Ind. Microbiol. Biotechnol., 28, pp. 325-332
dc.descriptionVemuri, G.N., Eiteman, M.A., Altman, E., Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli (2002) Appl. Environ. Microbiol., 68, pp. 1715-1727
dc.descriptionFrost, J.W., Draths, K.M., Synthesis of Catechol from Biomass-derived Carbon Sources, p. 1995. , Change Patent Number. Correct Reference: WO/1995/007979
dc.descriptionDuh, B., Solid-state polymerization of poly(trimethylene terephthalate) (2003) J. Appl. Polymer Sci., 89, pp. 3188-3200
dc.descriptionDozois, K.P., Lee, G.A., Carr, C.J., Hachtel, F., Krantz, J.C., The fermentation of propylene glycol by members of the escherichia-aerobacter-intermediate groups 30 (1937) J. Bacteriol., 34, pp. 9-13
dc.descriptionLaffend, L.A., Nagarajan, V., Nakamura, C.E., (2007) Bioconversion of A Fermentable Carbon Source to 1 3-propanediol by A Single Microorganism, , US7169588
dc.descriptionNair, R.V., Payne, M.S., Trimbur, D.E., Valle, F., (1999) Method for the Production of Glycerol by Recombinant Organisms, , WO 99/28480
dc.descriptionDiaz-Torres, M., Dunn-Coleman, N.S., Chase, M.W., Trimbur, D., (2005) Method for the Recombinant Production of 1 3-propanediol, , US Patent 6953684
dc.descriptionEmptage, M., Haynie, S.L., Laffebd, L.A., Pucci, J.P., Whited, G., (2006) Process for the Biological Production of 1 3-propanediol with High Titer, , US Patent 7067300
dc.descriptionhttp://www.duponttateandlyle.com/, Bioproducts: (last accessed Sept. 2008)Westervelt, R., DuPont to launch renewable and nano-based engineering plastics (2006) Chem. Week, 168, pp. 9-10
dc.descriptionCarlson, R., Laying the foundations for a bio-economy (2007) Syst. Synth. Biol., 1, pp. 109-117
dc.descriptionhttp://www2.dupont.com/Government/enUS/newsevents/article20060620.html, The Miracles of Science. DuPont Engineering Polymers today announced at NPE that it is moving forward with plans to produce a new family of high-performance thermoplastic resins and elastomer products made with renewable resources: (last accessed March 2009)Cunha, A.F., Missawa, S.K., Pereira, G.A.G., Industrial potential of yeast biotechnology in the production of bioethanol in Brazil: The example of conditional flocculation (2006) Industrial Perspectives for Bioethanol, , Franco, T.T., Ed., Instituto Uniemp: Sao Paulo
dc.descriptionWheals, A.E., Basso, L.C., Alves, D.M.G., Amorim, H.V., Fuel ethanol after 25 years (1999) Trends Biotechnol., 17, pp. 482-487
dc.descriptionBai, F.W., Anderson, W.A., Moo-Young, M., Ethanol fermentation technologies from sugar and starch feedstocks (2008) Biotechnol. Adv., 26, pp. 89-105
dc.descriptionWestergaard, S.L., Oliveira, A.P., Bro, C., Olsson, L., Nielsen, J., A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae (2007) Biotechnol. Bioeng., 96, pp. 134-145
dc.descriptionGoldemberg, J., Coelho, S.T., Guardabassi, P., The sustainability of ethanol production from sugarcane (2008) Energy Policy, 36, pp. 2086-2097
dc.descriptionMarris, E., Sugarcane and ethanol: Drink the best and drive the rest (2006) Nature, 444, pp. 670-672
dc.descriptionVertes, A.A., Inui, M., Yukawa, H., Technological options for biological fuel ethanol (2008) J. Mol. Microbiol. Biotechnol., 15, pp. 16-30
dc.descriptionhttp://www.bp.com/sectiongenericarticle.do?categoryId= 9023771&contentId=7044470, Global oil consumption grew by 1 mb/d: (last accessed Sept. 2008)Koh, L.P., Ghazoul, J., Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities (2008) Biological Conservation, 141, pp. 2450-2460
dc.descriptionLynd, L.R., Cushman, J.H., Nichols, R.J., Wyman, C.E., Fuel ethanol from cellulosic biomass (1991) Science, 251, pp. 1318-1323
dc.descriptionBadger, P.C., Ethanol from cellulose: A general review (2002) Trends in New Crops and New Uses, pp. 17-21
dc.descriptionIn Portuguese, , http://www.dedini.com.br/pt/aea.html, Ind́ustrias de Base. Dedini açucar e etanol: (last accessed Sept. 2008)
dc.descriptionOliverio, J.L., Soares, P.A., Produção de Á Lcool A Partir de Bagaço: O Processo Didini Hidrólise Ŕapida, , http://www.iea.usp.br/iea/online/midiateca/etanolcelulosicosoares.pdf2007, (last accessed Sept. 2008). In Portuguese
dc.descriptionhttp://www.fapesp.br/materia/3257/chamadas-de-propostas/ bioen-chamada-fapesp-dedini-para-apoio-a-pesquisa.htm, BIOEN-Chamada FAPESP-Dedini para Apoio a Pesquisa: (last accessed Sept. 2008) In Portuguesehttp://www.amyris.com/index.php?option=com.content&task=view&id= 54&Itemid=307, Amyris and Crystalsev Join to Launch Innovative Renewable Diesel from Sugarcane by 2010: (last accessed March 2009)http://www.braskem.com.br/site/portalbraskem/en/saladeimprensa/ saladeimprensadetalhes6062.aspx2007, A World Class Brazilian Petrochemical Company. Braskem has the first certified green Polyethylene in the World: (last accessed Sept. 2008)http://www.abdi.com.br/?q=node/353, Braskem Define F́abrica de Pĺastico Verde: (last accessed Sept. 2008) In Portuguesehttp://www.braskem.com.br/site/portalbraskem/en/saladeimprensa/ saladeimprensadetalhes7271.aspx, A World Class Brazilian Petrochemical Company. Braskem achieves new technological advance for production of green polymers: (last accessed Sept. 2008)
dc.languageen
dc.publisher
dc.relationPolymer Reviews
dc.rightsfechado
dc.sourceScopus
dc.titleThe Golden Bridge For Nature: The New Biology Applied To Bioplastics
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución