dc.creator | Rincones J. | |
dc.creator | Zeidler A.F. | |
dc.creator | Grassi M.C.B. | |
dc.creator | Carazzolle M.F. | |
dc.creator | Pereira G.A.G. | |
dc.date | 2009 | |
dc.date | 2015-06-26T13:38:28Z | |
dc.date | 2015-11-26T15:00:11Z | |
dc.date | 2015-06-26T13:38:28Z | |
dc.date | 2015-11-26T15:00:11Z | |
dc.date.accessioned | 2018-03-28T22:11:33Z | |
dc.date.available | 2018-03-28T22:11:33Z | |
dc.identifier | | |
dc.identifier | Polymer Reviews. , v. 49, n. 2, p. 85 - 106, 2009. | |
dc.identifier | 15583724 | |
dc.identifier | 10.1080/15583720902834817 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-70349504375&partnerID=40&md5=c4452b272219f29523d4571855d74536 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/93043 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/93043 | |
dc.identifier | 2-s2.0-70349504375 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1256144 | |
dc.description | There is a common concept in life: large and complex molecules result from the synthesis of units that are later joined together. Mankind learned this principle and employed it to develop language, culture, and technology. This same principle is applied in the petrochemical industry by fractionating the fossilized carbon chains into small molecules and then polymerizing them in order to develop synthetic polymers, which are much more flexible, resistant, and durable than natural polymers. Recent developments in molecular biology have opened the possibility of modifying organisms in order to create new biosynthetic routes for the production of monomers that would fit the biggest challenge in modern society: the production of high quality polymers from renewable feedstocks. This review focuses on the latest advances in molecular biology and the new knowledge and technologies that enable the possibility of converting cells into efficient and sustainable chemical reactors. The first examples of this technological advancement are already in the market. | |
dc.description | 49 | |
dc.description | 2 | |
dc.description | 85 | |
dc.description | 106 | |
dc.description | Madsen, M., The role of biomass in the future global energy supply (2007) The 20th World Energy Congress, , http://vbn.aau.dk/fbspretrieve/14071392/ MichaelMadsenWECYouthProgrammepaper.pdf, (last accessed Sept. 2008) | |
dc.description | (2007), http://nobelprize.org/nobelprizes/peace/laureates/2007/index.html, The Nobel Foundation (last accessed Sept. 2008)http://www.wasteonline.org.uk/resources/InformationSheets/Plastics.htm, (last accessed Sept. 2008)Stevens, E.S., What makes green plastics green? (2003) Biocycle, 44, pp. 24-27 | |
dc.description | Lee, S.Y., Hong, S.H., Lee, S.H., Park, S.J., Fermentative production of chemicals that can be used for polymer synthesis (2004) Macromol. Biosci., 4, pp. 157-164 | |
dc.description | Futuyma, D.J., Progress on the Origin of Species (2005) PLoS Biol., 3, pp. 197-199 | |
dc.description | Watson, J.D., Crick, F.H., The structure of DNA (1953) Cold SpringHarbor Symposia on Quantitative Biology, 18, pp. 123-131 | |
dc.description | Nirenberg, M., Caskey, C.T., Marshall, R., Brimacombe, R., Kellogg, D., Doctor, B., Hatfield, D., Anderson, F., The RNA code and protein synthesis (1966) Cold Spring Harbor Symposia on Quantitative Biology, 31, pp. 11-24 | |
dc.description | Crick, F., Central dogma of molecular biology (1970) Nature, 227, pp. 561-563 | |
dc.description | Smith, K.B., Genetic engineering - Techniques and potential (1976) Trends Biochem. Sci., , June 1976 | |
dc.description | Goeddel, D.V., Kleid, D.G., Bolivar, F., Heyneker, H.L., Yansura, D.G., Crea, R., Hirose, T., Riggs, A.D., Expression in Escherichia coli of chemically synthesized genes for human insulin (1979) Proc. Natl. Acad. Sci., 79, pp. 106-110 | |
dc.description | Maxam, A.M., Gilbert, W., A new method for sequencing DNA (1977) Proc. Natl. Acad. Sci., 74, pp. 560-564 | |
dc.description | Mullis, K., Fallona, F., Horng. Saikir., S.S., Erlich, H., Specific enzymatic amlification of DNA in vitro: The polymerase chain reaction (1986) Cold Spring Harbor Symposia on Quantitative Biology, 51, pp. 263-273 | |
dc.description | Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Naylor, J., Initial sequencing and analysis of the human genome (2001) Nature, 409, pp. 860-921 | |
dc.description | Human Genome Project Information, , http://www.ornl.gov/sci/techresources/HumanGenome/home.shtml, Genomics.energy.gov. (last accessed Sept. 2008) | |
dc.description | Ideker, T., Galitski, T., Hood, L., A new approach to decoding life: Systems Biology (2001) Annu. Rev. Genom. Hum. Genet., pp. 343-372 | |
dc.description | Hood, L., Galas, D., The digital code of DNA (2003) Nature, 421, pp. 444-448 | |
dc.description | Sanger, F., Nicklen, S., Coulson, A.R., DNA sequencing with chain-terminating inhibitors (1977) Proc. Natl. Acad. Sci., 74, pp. 5463-5467 | |
dc.description | Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, A.R., Kerlavage, A.R., Bult, C.J., Venter, J.C., Whole-genome random sequencing and assembly of Haemophilus influenzae Rd (1995) Science, 269, pp. 496-512 | |
dc.description | http://www.ncbi.nlm.nih.gov/sites/entrez?db=genome, Entrez Genome: (last accessed Oct. 2008)The EMBL Nucleotide Sequence Database, , http://www.ebi.ac.uk/embl/Services/DBStats/, Statistics: (last accessed Sept. 2008) | |
dc.description | Chan, E.Y., Advances in sequencing technology (2005) Mutat. Res., 573, pp. 13-40 | |
dc.description | Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Genome sequencing in microfabricated high-density picolitre reactors (2005) Nature, 437, pp. 376-380 | |
dc.description | Bentley, D.R., Whole-genome resequencing (2006) Curr. Opin. Genet., 16, pp. 545-552 | |
dc.description | Morozova, O., Marra, M.A., Applications of next-generation sequencing technologies in functional genomics (2008) Genomics, 92, pp. 255-264 | |
dc.description | Shendure, J., Mitra, R.D., Varma, C., Church, G.M., Advanced sequencing technologies: Methods and goals (2004) Nat. Rev. Genet., 5, pp. 335-344 | |
dc.description | Austin, C.P., The completed human genome: Implications for chemical biology (2003) Curr. Opin. Chem. Biol., 7, pp. 511-515 | |
dc.description | Sebaihia, M., Wren, B.W., Mullany, P., Fairweather, N.F., Minton, N., Stabler, R., Thomson, N.R., Parkhill, J., The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome (2006) Nat. Genet., 38, pp. 779-786 | |
dc.description | Methe, B.A., Nelson, K.E., Eisen, J.A., Paulsen, I.T., Nelson, W., Heidelberg, J.F., Wu, D., Fraser, C.M., Genome of Geobacter sulfurreducens: Metal reduction in subsurface environments (2003) Science, 302, pp. 1967-1969 | |
dc.description | Weiner, R.M., Taylor, L.E., Henrissat, B., Hauser, L., Land, M., Coutinho, P.M., Rancurel, C., Hutcheson, S., Complete genome sequence of the complex carbohydrate-degradingmarine bacterium, Saccharophagus degradans strain 2-40(T) (2008) Plos Genet., 4, pp. e1000087 | |
dc.description | Park, S.J., Lee, S.Y., Cho, J., Kim, T.Y., Lee, J.W., Park, J.H., Han, M.J., Global physiological understanding and metabolic engineering of microorganisms based on omics studies (2005) Appl. Microbiol. Biotechnol., 68, pp. 567-579 | |
dc.description | Joyce, A.R., Palsson, B.O., The model organism as a system: Integrating 'omics' data sets (2006) Nature, 7, pp. 198-210 | |
dc.description | Palsson, B., In silico biology through "omics" (2002) Nat. Biotechnol., 20, pp. 649-650 | |
dc.description | Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Integrated genomic and proteomic analyses of a systematically perturbed metabolic network (2001) Science, 292, pp. 929-934 | |
dc.description | Ge, H., Walhout, A.J.M., Vidal, M., Integrating 'omic' information: A bridge between genomics and systems biology (2003) Trends Genet., 19, pp. 551-560 | |
dc.description | Hobom, B., Gene surgery: On the threshold of synthetic biology (1980) Med. Klin., 21, pp. 834-841 | |
dc.description | Benner, S.A., Sismour, A.M., Synthetic biology (2005) Nat. Rev. Genet., 6, pp. 533-543 | |
dc.description | Russ, Z.N., Synthetic biology: Enormous possibility, exaggerated perils (2008) J. Biol. Eng., 2, pp. 1-3 | |
dc.description | Bailey, J.E., Toward a science of metabolic engineering 9 (1991) Science, 252, pp. 1668-1675 | |
dc.description | http://parts2.mit.edu/wiki/index.php/MainPage, Massachusetts Institute of Technology. International Genetically Engineered CompetitionHome Page: (last accessed Sept. 2008)Endy, D., Foundations for engineering biology (2005) Nat. Rev., 438, pp. 449-453 | |
dc.description | Major progress announced in DNA synthesis (1984) Nucleic Acids Res., 12, p. 1. , Applied Biosystems | |
dc.description | http://www.jcvi.org/cms/research/projects/synthetic-bacterial-genome/ press-release/, Venter Institute Scientists Create First Synthetic Bacterial Genome: (last accessed Sept. 2008)Ro, D., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., Ho, K.A., Keasling, J.D., Production of the antimalarial drug precursor artemisinic acid in engineered yeast (2006) Nature, 440, pp. 940-943 | |
dc.description | http://www.wasteonline.org.uk/resources/InformationSheets/Plastics.htm, Plastic Recycling Information Sheet: (last accessed Sept. 2008)Luengo, J.M., Garcia, B., Sandoval, A., Naarro, G., Olivera, E.R., Bioplastics from microorganisms (2003) Curr. Opin. Microbiol., 6, pp. 251-260 | |
dc.description | Steinbuchel, A., Hein, S., Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms (2001) Adv. Biochem. Eng. Biotechnol., 71, pp. 81-123 | |
dc.description | Khanna, S., Srivastava, A.K., Recent advances in microbial polyhydroxyalkanoates (2005) Process Biochem., 40, pp. 607-619 | |
dc.description | Kalia, V.C., Lal, S., Cheema, S., Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: Horizontal gene transfer (2007) Gene, 389, pp. 19-26 | |
dc.description | Nonato, R., Mantelatto, P., Rossell, C., Integrated production of biodegradable plastic, sugar and ethanol (2001) Appl. Microbiol. Biotechnol., 57, pp. 1-5 | |
dc.description | Anderson, A.J., Dawes, E.A., Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates (1990) Microbiol. Mol. Biol. Rev., 54, pp. 450-472 | |
dc.description | Braunegg, G., Lefebrve, G., Genser, K.F., Polyhydroxyalkanoates, biopolyesters from renewable sources: Physiological and engineering aspects (1998) Journal of Biotechnology, 65, pp. 127-161 | |
dc.description | Steinbuchel, A., Valentine, S.J., Diversity of bacterial polyhydroxyalkanoic acids (1995) FEMS Microbiology Letters, 128, pp. 219-228 | |
dc.description | Suriyamongkol, P., Weselake, R., Narine, S., Moloney, M., Shah, S., Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants - A review (2007) Biotechnol. Adv., 25, pp. 148-175 | |
dc.description | Chandra, R., Rustgi, R., Biodegradable Polymers (1998) Progr. Polym. Sci., 23, pp. 1273-1335 | |
dc.description | Chiellini, E., Solaro, R., Biodegradable polymeric materials (1996) Adv. Mater., 8, pp. 305-313 | |
dc.description | What Is PSM?, , http://www.psm-hk.com/Eng/material.htm, (last accessed Feb. 2009) | |
dc.description | What Is PSM?, , http://www.psmna.com/whatispsm.html, (last accessed Sept. 2008) | |
dc.description | The Miracles of Science.DuPont™Biomax® Sheet, Resins and Modifiers, , http://www2.dupont.com/Biomax/enUS/, (last accessed March 2009) | |
dc.description | Biodegradable Plastic Ever Corn TM, , http://www.japancornstarch.com/h13.html, (last accessed Feb. 2009) | |
dc.description | The Renewable Plastic Cereplast Compostables and Cereplast Hybrid Resins, , http://www.cereplast.com/product.php, (last accessed Sept. 2008) | |
dc.description | Changing the Nature of Plastics, , http://www.plantic.com.au/ourtechnologies/capabilities/ starch-technologies/, Starch Technologies: (last accessed Feb. 2009) | |
dc.description | Long, Y., Coombs, S., Christie, G.B.Y., (2007) Biodegradable Polymer, , US20070148383 | |
dc.description | Evstatiev, M., Polyamides (1997) Handbook of Thermoplastics, 1. , Olabisi, O., Eds., CRC Press:New York City | |
dc.description | http://www.arkema-inc.com/index.cfm?pag=109, Change reference to: "Arkema Inc. North America. Rilsan Polyamide 11 and 12: (last accessed Sept. 2008)Logan, L.R., Udesh, S.V., Method for Preparing Sebacic Acid and Octanol-2, , US Patent 6392074 B1 | |
dc.description | Ogunniyi, D.S., Castor oil: A vital industrial raw material (2006) Bioresour. Technol., 97, pp. 1086-1091 | |
dc.description | http://www.plasticsportal.net/wa/plasticsEU?enGB/portal/show/common/ plasticsportalnews/2007/07450, BASF The Chemical Company. Polyamide from renewable raw materials: (last accessed Sept. 2008)http://www.plastemart.com/upload/Literature/specialpolyamides.asp, Special polyamides are expected to grow much faster than polyamide 6 & 6.6: (last accessed Feb. 2009)Wu, S., Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid: Characterization and biodegradability assessment (2005) Macromolecular Bioscience, 5, pp. 352-361 | |
dc.description | (1965) Preparation of Optically Active Lactides, , EI du Pont de Nemours&Co. Inc. UKPatent 1007347 | |
dc.description | De Vries, K.S., (1989) Preparation of Polylactic Acid and Copolymers of Lactic Acids, , US4797468 | |
dc.description | Mehta, R., Kumar, V., Bhunia, H., Upadhyay, S.N., Synthesis of poly(lactic acid): A review (2005) Polymer Rev., 45, pp. 325-349 | |
dc.description | Kowalski, A., Libiszowski, J., Duda, A., Penczeck, S., Polymerization of l,l-dilactide initiated by tin(II) butoxide (2000) Macromol., 36, pp. 1964-1971 | |
dc.description | Venus, J., Richter, K., Production of lactic acid from barley: Strain selection, phenotypic and medium optimization (2006) Eng. Life Sci., 6, pp. 492-500 | |
dc.description | Ding, S., Tan, T., L-lactic acid production by Lactobacillus casei fermentation using different fed-batch feeding strategies (2006) Process Biochem., 41, pp. 1451-1454 | |
dc.description | Ishida, N., Saitoh, S., Onishi, T., Tokuhiro, K., Nagamori, E., Kitamoto, K., Takahashi, H., The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production (2006) Biosci. Biotech. Biochem., 70, pp. 1148-1153 | |
dc.description | http://www.natureworksllc.com/, Ingeo, Ingenious materials. (last accessed Sept. 2008)Datta, R., Henry, M., Lactic acid: Recent advances in products, processes and technologies - A review (2006) J. Chem. Technol. Biotechnol., 81, pp. 1119-1129 | |
dc.description | Biebl, H., Menzel, K., Zeng, A.P., Deckwer, W.D., Microbial production of 1,3-propanediol (1999) Appl. Microbiol. Biotechnol., 52, pp. 289-297 | |
dc.description | Haveren, J.V., Scott, E.L., Sanders, J., Bulk chemicals from biomass (2008) BioFPR., 2, pp. 41-57 | |
dc.description | Nakamura, C.E., Whited, G.M., Metabolic engineering for the microbial production of 1,3- propanediol (2003) Curr. Opin. Biotechnol., 14, pp. 454-459 | |
dc.description | Antoniewicz, M.R., Kraynie, D.F., Laffend, L.A., Gonzalez-Lergier, J., Kelleher, J.K., Stephanopoulos, G., Metabolic flux analysis in a nonstationary system: Fed-batch fermentation of a high yielding strain of E. coli producing 1,3-propanediol (2007) Metab. Eng., 9, pp. 277-292 | |
dc.description | Cao, N.J., Du, J.X., Chen, C.S., Gong, C.S., Tsao, G.T., Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor (1997) Appl. Biochem. Biotechnol., pp. 63-65. , 387-394 | |
dc.description | Vemuri, G.N., Eiteman, M.A., Altman, E., Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions (2002) J. Ind. Microbiol. Biotechnol., 28, pp. 325-332 | |
dc.description | Vemuri, G.N., Eiteman, M.A., Altman, E., Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli (2002) Appl. Environ. Microbiol., 68, pp. 1715-1727 | |
dc.description | Frost, J.W., Draths, K.M., Synthesis of Catechol from Biomass-derived Carbon Sources, p. 1995. , Change Patent Number. Correct Reference: WO/1995/007979 | |
dc.description | Duh, B., Solid-state polymerization of poly(trimethylene terephthalate) (2003) J. Appl. Polymer Sci., 89, pp. 3188-3200 | |
dc.description | Dozois, K.P., Lee, G.A., Carr, C.J., Hachtel, F., Krantz, J.C., The fermentation of propylene glycol by members of the escherichia-aerobacter-intermediate groups 30 (1937) J. Bacteriol., 34, pp. 9-13 | |
dc.description | Laffend, L.A., Nagarajan, V., Nakamura, C.E., (2007) Bioconversion of A Fermentable Carbon Source to 1 3-propanediol by A Single Microorganism, , US7169588 | |
dc.description | Nair, R.V., Payne, M.S., Trimbur, D.E., Valle, F., (1999) Method for the Production of Glycerol by Recombinant Organisms, , WO 99/28480 | |
dc.description | Diaz-Torres, M., Dunn-Coleman, N.S., Chase, M.W., Trimbur, D., (2005) Method for the Recombinant Production of 1 3-propanediol, , US Patent 6953684 | |
dc.description | Emptage, M., Haynie, S.L., Laffebd, L.A., Pucci, J.P., Whited, G., (2006) Process for the Biological Production of 1 3-propanediol with High Titer, , US Patent 7067300 | |
dc.description | http://www.duponttateandlyle.com/, Bioproducts: (last accessed Sept. 2008)Westervelt, R., DuPont to launch renewable and nano-based engineering plastics (2006) Chem. Week, 168, pp. 9-10 | |
dc.description | Carlson, R., Laying the foundations for a bio-economy (2007) Syst. Synth. Biol., 1, pp. 109-117 | |
dc.description | http://www2.dupont.com/Government/enUS/newsevents/article20060620.html, The Miracles of Science. DuPont Engineering Polymers today announced at NPE that it is moving forward with plans to produce a new family of high-performance thermoplastic resins and elastomer products made with renewable resources: (last accessed March 2009)Cunha, A.F., Missawa, S.K., Pereira, G.A.G., Industrial potential of yeast biotechnology in the production of bioethanol in Brazil: The example of conditional flocculation (2006) Industrial Perspectives for Bioethanol, , Franco, T.T., Ed., Instituto Uniemp: Sao Paulo | |
dc.description | Wheals, A.E., Basso, L.C., Alves, D.M.G., Amorim, H.V., Fuel ethanol after 25 years (1999) Trends Biotechnol., 17, pp. 482-487 | |
dc.description | Bai, F.W., Anderson, W.A., Moo-Young, M., Ethanol fermentation technologies from sugar and starch feedstocks (2008) Biotechnol. Adv., 26, pp. 89-105 | |
dc.description | Westergaard, S.L., Oliveira, A.P., Bro, C., Olsson, L., Nielsen, J., A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae (2007) Biotechnol. Bioeng., 96, pp. 134-145 | |
dc.description | Goldemberg, J., Coelho, S.T., Guardabassi, P., The sustainability of ethanol production from sugarcane (2008) Energy Policy, 36, pp. 2086-2097 | |
dc.description | Marris, E., Sugarcane and ethanol: Drink the best and drive the rest (2006) Nature, 444, pp. 670-672 | |
dc.description | Vertes, A.A., Inui, M., Yukawa, H., Technological options for biological fuel ethanol (2008) J. Mol. Microbiol. Biotechnol., 15, pp. 16-30 | |
dc.description | http://www.bp.com/sectiongenericarticle.do?categoryId= 9023771&contentId=7044470, Global oil consumption grew by 1 mb/d: (last accessed Sept. 2008)Koh, L.P., Ghazoul, J., Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities (2008) Biological Conservation, 141, pp. 2450-2460 | |
dc.description | Lynd, L.R., Cushman, J.H., Nichols, R.J., Wyman, C.E., Fuel ethanol from cellulosic biomass (1991) Science, 251, pp. 1318-1323 | |
dc.description | Badger, P.C., Ethanol from cellulose: A general review (2002) Trends in New Crops and New Uses, pp. 17-21 | |
dc.description | In Portuguese, , http://www.dedini.com.br/pt/aea.html, Ind́ustrias de Base. Dedini açucar e etanol: (last accessed Sept. 2008) | |
dc.description | Oliverio, J.L., Soares, P.A., Produção de Á Lcool A Partir de Bagaço: O Processo Didini Hidrólise Ŕapida, , http://www.iea.usp.br/iea/online/midiateca/etanolcelulosicosoares.pdf2007, (last accessed Sept. 2008). In Portuguese | |
dc.description | http://www.fapesp.br/materia/3257/chamadas-de-propostas/ bioen-chamada-fapesp-dedini-para-apoio-a-pesquisa.htm, BIOEN-Chamada FAPESP-Dedini para Apoio a Pesquisa: (last accessed Sept. 2008) In Portuguesehttp://www.amyris.com/index.php?option=com.content&task=view&id= 54&Itemid=307, Amyris and Crystalsev Join to Launch Innovative Renewable Diesel from Sugarcane by 2010: (last accessed March 2009)http://www.braskem.com.br/site/portalbraskem/en/saladeimprensa/ saladeimprensadetalhes6062.aspx2007, A World Class Brazilian Petrochemical Company. Braskem has the first certified green Polyethylene in the World: (last accessed Sept. 2008)http://www.abdi.com.br/?q=node/353, Braskem Define F́abrica de Pĺastico Verde: (last accessed Sept. 2008) In Portuguesehttp://www.braskem.com.br/site/portalbraskem/en/saladeimprensa/ saladeimprensadetalhes7271.aspx, A World Class Brazilian Petrochemical Company. Braskem achieves new technological advance for production of green polymers: (last accessed Sept. 2008) | |
dc.language | en | |
dc.publisher | | |
dc.relation | Polymer Reviews | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | The Golden Bridge For Nature: The New Biology Applied To Bioplastics | |
dc.type | Artículos de revistas | |