Actas de congresos
Unsupervised Distance Learning By Reciprocal Knn Distance For Image Retrieval
Registro en:
Icmr 2014 - Proceedings Of The Acm International Conference On Multimedia Retrieval 2014. Association For Computing Machinery, v. , n. , p. 345 - 352, 2014.
10.1145/2578726.2578770
2-s2.0-84899769548
Autor
Pedronette D.C.G.
Penatti O.A.B.
Calumby R.T.
Da S. Torres R.
Institución
Resumen
This paper presents a novel unsupervised learning approach that takes into account the intrinsic dataset structure, which is represented in terms of the reciprocal neighborhood references found in different ranked lists. The proposed Reciprocal kNN Distance defines a more effective distance between two images, and is used to improve the effectiveness of image retrieval systems. Several experiments were conducted for different image retrieval tasks involving shape, color, and texture descriptors. The proposed approach is also evaluated on multimodal retrieval tasks, considering visual and textual descriptors. Experimental results demonstrate the effectiveness of proposed approach. The Reciprocal kNN Distance yields better results in terms of effectiveness than various state-of-the-art algorithms. Copyright © 2014 ACM.
345 352 AMD; Advanced Micro Devices; Advanced Micro Devices Arica, N., Vural, F.T.Y., BAS: A perceptual shape descriptor based on the beam angle statistics (2003) Pattern Recognition Letters, 24 (9-10), pp. 1627-1639 Baeza-Yates, R.A., Ribeiro-Neto, B., (1999) Modern Information Retrieval, , Addison-Wesley Longman Bai, X., Wang, B., Wang, X., Liu, W., Tu, Z., Co-transduction for shape retrieval (2010) ECCV, 3, pp. 328-341 Belongie, S., Malik, J., Puzicha, J., Shape matching and object recognition using shape contexts (2002) PAMI, 24 (4), pp. 509-522 Brodatz, P., (1966) Textures: A Photographic Album for Artists and Designers, , Dover Chen, Y., Li, X., Dick, A., Hill, R., Ranking consistency for image matching and object retrieval (2014) Pattern Recognition, 47 (3), pp. 1349-1360 Cormack, G.V., Clarke, C.L.A., Buettcher, S., Reciprocal rank fusion outperforms condorcet and individual rank learning methods (2009) ACM SIGIR, pp. 758-759 Da Torres, R.S., Falcão, A.X., Content-based image retrieval: Theory and applications (2006) Revista de Informática Teórica e Aplicada, 13 (2), pp. 161-185 Da Torres, R.S., Falcão, A.X., Contour salience descriptors for effective image retrieval and analysis (2007) Image and Vision Computing, 25 (1), pp. 3-13 Datta, R., Joshi, D., Li, J., Wang, J.Z., Image retrieval: Ideas, influences, and trends of the new age (2008) ACM Computing Surveys, 40 (2), pp. 501-560 Deselaers, T., Keysers, D., Ney, H., Features for image retrieval: An experimental comparison (2008) Information Retrieval, 11 (2), pp. 77-107 Ghahramani, Z., Unsupervised learning (2004) Advanced Lectures on Machine Learning, pp. 72-112 Gopalan, R., Turaga, P., Chellappa, R., Articulation-invariant representation of non-planar shapes (2010) ECCV?2010, 3, pp. 286-299 Huang, C.-B., Liu, Q., An orientation independent texture descriptor for image retrieval (2007) ICCCAS 2007, pp. 772-776 Huang, J., Kumar, S.R., Mitra, M., Zhu, W.-J., Zabih, R., Image indexing using color correlograms (1997) CVPR, pp. 762-768 Jegou, H., Schmid, C., Harzallah, H., Verbeek, J., Accurate image search using the contextual dissimilarity measure (2010) PAMI, 32 (1), pp. 2-11 Jiang, J., Wang, B., Tu, Z., Unsupervised metric learning by self-smoothing operator (2011) ICCV, pp. 794-801 Kontschieder, P., Donoser, M., Bischof, H., Beyond pairwise shape similarity analysis (2009) ACCV, pp. 655-666 Kovalev, V., Volmer, S., Color co-occurence descriptors for querying-by-example (1998) International Conference on Multimedia Modeling, p. 32 Lafon, S., Lee, A.B., Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization (2006) PAMI, 28 (9), pp. 1393-1403 Latecki, L.J., Lakmper, R., Eckhardt, U., Shape descriptors for non-rigid shapes with a single closed contour (2000) CVPR, pp. 424-429 Leibe, B., Schiele, B., Analyzing appearance and contour based methods for object categorization (2003) CVPR, 2. , II-409-15 vol.2 Lewis, J., Ossowski, S., Hicks, J., Errami, M., Garner, H.R., Text similarity: An alternative way to search medline (2006) Bioinformatics, 22 (18), pp. 2298-2304 Ling, H., Jacobs, D.W., Shape classification using the inner-distance (2007) PAMI, 29 (2), pp. 286-299 Ling, H., Yang, X., Latecki, L.J., Balancing deformability and discriminability for shape matching (2010) ECCV, 3, pp. 411-424 Liu, Y., Zhang, D., Lu, G., Ma, W.-Y., A survey of content-based image retrieval with high-level semantics (2007) Pattern Recognition, 40 (1), pp. 262-282 Manjunath, B., Ohm, J.-R., Vasudevan, V., Yamada, A., Color and texture descriptors (2001) IEEE Transactions on Circuits and Systems for Video Technology, 11 (6), pp. 703-715 Ojala, T., Pietikäinen, M., Mäenpää, T., Multiresolution gray-scale and rotation invariant texture classification with local binary patterns (2002) PAMI, 24 (7), pp. 971-987 Pedronette, D.C.G., Da Torres, R.S., Shape retrieval using contour features and distance optmization (2010) VISAPP, 1, pp. 197-202 Pedronette, D.C.G., Da Torres, R.S., Exploiting clustering approaches for image re-ranking (2011) Journal of Visual Languages and Computing, 22 (6), pp. 453-466 Pedronette, D.C.G., Da Torres, R.S., Exploiting pairwise recommendation and clustering strategies for image re-ranking (2012) Information Sciences, 207, pp. 19-34 Pedronette, D.C.G., Da Torres, R.S., Image re-ranking and rank aggregation based on similarity of ranked lists (2013) Pattern Recognition, 46 (8), pp. 2350-2360 Qin, D., Gammeter, S., Bossard, L., Quack, T., Van Gool, L., Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors (2011) CVPR, pp. 777-784. , june Qin, T., Liu, T.-Y., Zhang, X.-D., Wang, D.-S., Li, H., Global ranking using continuous conditional random fields (2008) NIPS, pp. 1281-1288 Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M., Gatford, M., Okapi at trec-3 (1994) TREC, pp. 109-126 Stehling, R.O., Nascimento, M.A., Falcão, A.X., A compact and efficient image retrieval approach based on border/interior pixel classification (2002) CIKM, pp. 102-109 Swain, M.J., Ballard, D.H., Color indexing (1991) International Journal on Computer Vision, 7 (1), pp. 11-32 Tao, B., Dickinson, B.W., Texture recognition and image retrieval using gradient indexing (2000) JVCIR, 11 (3), pp. 327-342 Tenenbaum, J.B., Silva, V.D., Langford, J.C., A global geometric framework for nonlinear dimensionality reduction (2000) Science, 290 (5500), pp. 2319-2323 Tu, Z., Yuille, A.L., Shape matching and recognition - Using generative models and informative features (2004) ECCV, pp. 195-209 Van De Weijer, J., Schmid, C., Coloring local feature extraction (2006) ECCV, pp. 334-348 Van Rijsbergen, C.J., (1979) Information Retrieval, , Butterworth-Heinemann, London Wang, B., Jiang, J., Wang, W., Zhou, Z.-H., Tu, Z., Unsupervised metric fusion by cross diffusion (2012) CVPR, pp. 3013-3020 Williams, A., Yoon, P., Content-based image retrieval using joint correlograms (2007) MTAP, 34 (2), pp. 239-248. , August Wolf, L., Hassner, T., Taigman, Y., Similarity scores based on background samples (2009) ACCV?09, pp. 88-97 Wu, P., Manjunanth, B.S., Newsam, S.D., Shin, H.D., A texture descriptor for image retrieval and browsing (1999) CBAIVL, pp. 3-7 Yang, X., Bai, X., Latecki, L.J., Tu, Z., Improving shape retrieval by learning graph transduction (2008) ECCV, 4, pp. 788-801 Yang, X., Koknar-Tezel, S., Latecki, L.J., Locally constrained diffusion process on locally densified distance spaces with applications to shape retrieval (2009) CVPR, pp. 357-364 Yang, X., Prasad, L., Latecki, L., Affinity learning with diffusion on tensor product graph (2012) PAMI, PP (99), p. 1 Young, H.P., An axiomatization of borda?s rule (1974) Journal of Economic Theory, 9 (1), pp. 43-52 Zhang, S., Yang, M., Cour, T., Yu, K., Metaxas, D.N., Query specific fusion for image retrieval ECCV, 2012, pp. 660-673