Artículos de revistas
State Of The Art Of Nanobiotechnology Applications In Neglected Diseases
Registro en:
Current Nanoscience. , v. 5, n. 4, p. 396 - 408, 2009.
10.2174/157341309789378069
2-s2.0-70350761694
Autor
Duran N.
Marcato P.D.
Teixeira Z.
Duran M.
Costa F.T.M.
Brocchi M.
Institución
Resumen
The neglected diseases have not received any especial public and private attention in the last years, as for example, some parasitic diseases. Considerable amounts of private and public money are needed to apply nanobiotechnology for the treatment of neglected diseases. This review focuses on malaria, leishmaniasis, schistosomiasis, trypanosomiasis, tuberculosis, leprosy and filiarasis, and onchocerciasis where liposomes, polymeric nanoparticles or nanostructured lipid carriers have been applied. These nanocarrier systems have shown promissing results in the treatment of many neglected diseases with diminished toxicity and increased efficacy as well as a prolonged release with a reduced number of dosages. Despite these promising results, few nanocarriers have been used in clinical tests. As far as we know, these references are a minority compared to the number of studies of drug delivery systems that have been published in the last years. Therefore, the challenge for the researchers in this area is to generate interest amongst the governments and industries for the treatment of neglected diseases. © 2009 Bentham Science Publishers Ltd. 5 4 396 408 Kayser, O., Lemke, A., Hernandez-Trejo, N., The impact of nanobiotechnology on the development of new drug delivery systems (2005) Current Pharmaceutical Biotechnology, 6 (1), pp. 3-5 Nahar, M., Dutta, T., Murugesan, S., Asthana, A., Mishra, D., Raikumar, V., Tare, M., Jain, N.K., Functional polymeric nanoparticles An efficient and promising tool for active delivery of bioactives (2006) Crit. Rev. Ther. Drug Carrier Syst., 23, pp. 259-318 Couvreur, P., Vauthier, C., Nanotechnology: Intelligent design to treat complex disease (2006) Pharm. Res., 23, pp. 1417-1450 Gill, S., Lobenberg, R., Ku, T., Azarmi, S., Roa, W., Prenner, E.J., Nanoparticles: Characteristics, mechanisms of action, and toxicity in pulmonary drug delivery - A review (2007) Journal of Biomedical Nanotechnology, 3 (2), pp. 107-119. , DOI 10.1166/jbn.2007.015 Barratt, G., Bretagne, S., Optimizing efficacy of Amphotericin B through nanomodification (2007) International Journal of Nanomedicine, 2 (3), pp. 301-313 Sung, J.C., Pulliam, B.L., Edwards, D.A., Nanoparticles for drug delivery to the lungs (2007) Trends Biotechnol., 25, pp. 563-570 Mohamed, F., Van Der Walle, C.F., Engineering biodegradable polyester particles with specific drug targeting and drug release properties (2008) J. Pharm. Sci., 97, pp. 71-87 Alving, C.R., Liposomes as drug carriers in leishmaniasis and malaria (1986) Parasitology Today, 2 (4), pp. 101-107. , DOI 10.1016/0169-4758(86)90039-6 Kayser, O., Kiderlen, A.F., Delivery strategies for antiparasitics (2003) Exp. Opin. Investig. Drugs, 12, pp. 197-207 Durán, N., (2004) Brazilian Nanobiotechnology Network MCT/CNPq-Brazil, , www.mct.gov.br/upd_blob/0007/7565.pdf, Accessed: March 1, 2007 Lopes, S.C.P., Blanco, Y.C., Nogueira, P.A., Rodrigues, F.L.S., Justo, G.Z., Duran, N., Costa, F.T.M., Evaluation of the in vivo and in vitro antiplasmodium activity of the violacein extracted from Chromobacterium violaceum XXII Annual Meeting of the Brazilian Society of Protozoology, 2006, Caxambu, , Abstr. QT25, 2006, 195 Leon, L.L., Miranda, C.C., De Souza, A.O., Duran, N., Antileishmanial activity of the violacein extracted from Chromobacterium violaceum [4] (2001) Journal of Antimicrobial Chemotherapy, 48 (3), pp. 449-450 Durán, N., De Azevedo, M.M.M., Polymeric nanoparticles encapsulating a pharmaceutical or cosmetics compounds, their process and cosmetic or pharmaceutical formulation (2004), Brazilian Patent PIBr 0100199-100200Durán, N., Justo, G.Z., Ferreira, C.V., Melo, P.S., Cordi, L., Martins, D., Violacein: Properties and biological activities (2007) Biochem. Appl. Biotechnol., 48, pp. 127-133 Lala, S., Gupta, S., Sahu, N.P., Mandal, D., Mandal, N.B., Moulik, S.P., Basu, M.K., Critical evaluation of the therapeutic potential of bassic acid incorporated in oil-in-water microemulsions and poly-D,L-lactide nanoparticle against experimental (2006) J. Drug Target., 14, pp. 171-179 Tyagi, R., Lala, S., Verma, A.K., Nandy, A.K., Mahato, S.B., Maitra, A., Basu, M.K., Targeted delivery of arjunglucoside I using surface hydrophilic and hydrophobic nanocarriers to combat experimental leishmaniasis (2005) Journal of Drug Targeting, 13 (3), pp. 161-171. , DOI 10.1080/10611860500046732 Gaspar, R., Preat, V., Roland, M., Nanoparticles of polyisohexylcyanoacrylate (PIHCA) as carriers of primaquine - Formulation, physicochemical characterization and acute toxicity (1991) Int. J. Pharm., 68, pp. 111-119 Gaspar, R., Opperdoes, F., Preat, V., Ronald, M., Drug targeting with polyalkylcyanoacrylate nanoparticles: In vitro activity of primaquine-loaded nanoparticles against intracellular Leishmania donovani (1992) Ann. Trop. Med. Parasitol., 86, pp. 41-49 Heurtault, B., Legrand, P., Mosqueira, V., Devissaguet, J.-P., Barratt, G., Bories, C., The antileishmanial properties of surface-modified, primaquine-loaded nanocapsules tested against intramacrophagic Leishmania donovani amastigotes in vitro (2001) Annals of Tropical Medicine and Parasitology, 95 (5), pp. 529-533. , DOI 10.1080/00034980120067226 Paul, M., Durand, R., Boulard, Y., Fusai, T., Fernandez, C., Rivollet, D., Deniau, M., Astier, A., Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: Implication in the intracellular drug release in Leishmania major infected mice (1998) Journal of Drug Targeting, 5 (6), pp. 481-490 Ehrenberg, J.P., Ault, S.K., Neglected diseases of neglected populations: Thinking to reshape the determinants of health in Latin Americas and Caribbean (2005) BMC Public Health, 5, p. 119. , doi:10.1186/1471-2458-5-119 Amarji, B., Ajazuddin, Raghuwanshi, D., Vyas, S.P., Kanaujia, P., Lipid nano spheres (LNSs) for enhanced oral bioavailability of amphotericin B: Development and characterization (2007) Journal of Biomedical Nanotechnology, 3 (3), pp. 264-269. , DOI 10.1166/jbn.2007.029 Feng, Z.Q., Zhong, S.G., Li, Y.H., Li, Y.Q., Qiu, Z.N., Wang, Z.M., Li, J., Guan, X.H., Nanoparticles as a vaccine adjuvant of anti-idiotypic antibody against schistosomiasis (2004) Chin. Med. J., 117, pp. 83-87 Mainardes, R.M., Chaud, M.V., Gremiao, M.P.D., Evangelista, R.C., Development of praziquantel-loaded PLGA nanoparticles and evaluation of intestinal permeation by the everted gut sac model (2006) Journal of Nanoscience and Nanotechnology, 6 (9-10), pp. 3057-3061. , DOI 10.1166/jnn.2006.487 De Araujo, S.C., De Mattos, A.C.A., Teixeira, H.F., Coelho, P.M.Z., Nelson, D.L., De Oliveira, M.C., Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions (2007) International Journal of Pharmaceutics, 337 (1-2), pp. 307-315. , DOI 10.1016/j.ijpharm.2007.01.009, PII S0378517307000191 Duran, N., Menck, C.F.M., Chromobacterium violaceum: A review of pharmacological and industiral perspectives (2001) Critical Reviews in Microbiology, 27 (3), pp. 201-222 Durán, N., Campos, V., Riveros, R., Joyas, A., Pereira, M.F., Haun, M. Bacterial Chemistry-III: Preliminary studies on trypanosomal activities of Chromobacterium violaceum products (1989) An. Acad. Bras. Ciênc., 61, pp. 31-36 Durán, N., Haun, M., Trypanocide. State of Art (1991) Mem. Inst. Oswaldo Cruz, 86 (SUPPL. I), pp. 29-30 Sanchez, G., Cuellar, D., Zulantay, I., Gajardo, M., Gonzalez-Martin, G., Cytotoxicity and trypanocidal activity of nifurtimox encapsulated in ethyl-cyanoacrylate nanoparticles (2002) Biol. Res., 35, pp. 39-45 Gonzalez-Martin, G., Figueroa, C., Merino, I., Osuna, A., Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier: Preparation and trypanocidal activity (2000) European Journal of Pharmaceutics and Biopharmaceutics, 49 (2), pp. 137-142. , DOI 10.1016/S0939-6411(99)00076-4, PII S0939641199000764 Urbina, J.A., Specific treatment of Chagas disease: Current status and new developments (2001) Current Opinion in Infectious Diseases, 14 (6), pp. 733-741 Renslo, A.R., McKerrow, J.H., Drug discovery and development for neglected parasitic diseases (2006) Nature Chemical Biology, 2 (12), pp. 701-710. , DOI 10.1038/nchembio837, PII NCHEMBIO837 Molina, J., Urbina, J.A., Gref, R., Brener, Z., Rodriguez, J.M., Cure of experimental Chagas' disease by the bis-triazole D0870 incorporated into 'stealth' polyethyleneglycol-polylactide nanospheres (2001) J. Antimicrob. Chemother., 47, pp. 101-104 Olbrich, C., Gessner, A., Kayser, O., Muller, R.H., Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate (2002) Journal of Drug Targeting, 10 (5), pp. 387-396. , DOI 10.1080/1061186021000001832 Flaig, R.M., Rosenkranz, V., Wink, M., Fricker, G., Ktenate nanoparticles (bdellosomes): A novel strategy for delivering drugs to parasites or tumours (2005) Journal of Drug Delivery Science and Technology, 15 (1), pp. 59-63 Schwinté, P., Ramphul, M., Darcy, R., O'Sullivan, J.F., Amphiphilic cyclodextrin complexation of clofazimine (2003) J. Incl. Phenom. Macro. Chem., 47, pp. 109-112 De Souza, A.O., Aily, D.C.G., Sato, D.N., Durán, N., In vitro activity of violacein against Mycobacterium tuberculosis H37Ra (1999) Rev. Inst. Adolfo Lutz, 58, pp. 59-62 Sharma, A., Pandey, R., Skarma, S., Khuller, G.K., Chemotherapeutic efficacy of poly (DL-lactide-co-glycolide) nanoparticle encapsulated antitubercular drugs at sub-therapeutic dose against experimental tuberculosis (2004) Int. J. Antimicrob. Agents, 24, pp. 599-604 Zahoor, A., Sharma, S., Khuller, G.K., Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis (2005) International Journal of Antimicrobial Agents, 26 (4), pp. 298-303. , DOI 10.1016/j.ijantimicag.2005.07.012, PII S0924857905002050 Pandey, R., Sharma, S., Khuller, G.K., Oral solid lipid nanoparticle-based antitubercular chemotherapy (2005) Tuberculosis, 85 (5-6), pp. 415-420. , DOI 10.1016/j.tube.2005.08.009, PII S1472979205000703 Pandey, R., Khuller, G.K., Oral nanoparticle-based antituberculosis drug delivery to the brain in an experimental model (2006) J. Antimicrob. Chemother., 57, pp. 1146-1152 Kumar, P.V., Asthana, A., Dutta, T., Jain, N.K., Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers (2006) J. Drug Target., 14, pp. 546-556 Date, A.A., Joshi, M.D., Patravale, V.B., Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles (2007) Adv. Drug Deliv. Rev., 59, pp. 5005-5521 Durán, N., Alvarenga, M.A., Marcato, P.D., Melo, P.S., Microencapsulation of antibiotic rifampicin in poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) (2008) J. Pharm. Pharmacol., 31, pp. 1509-1516 Duran, N., De Oliveira, A.F., De Azevedo, M.M.M., In vitro studies on the release of isoniazid incorporated in poly(ε-caprolactone) (2006) Journal of Chemotherapy, 18 (5), pp. 473-479 Ahmad, Z., Pandey, R., Sharma, S., Khuller, G.K., Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses (2006) Int. J. Antimicrob. Agents., 27, pp. 409-416 Ahmad, Z., Sharma, S., Khuller, G.K., Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis (2007) Nanomed. Nanotechnol. Biol. Med., 3, pp. 239-243 Bivas-Benita, M., Van Meijgaarden, K.E., Franken, K.L.M.C., Junginger, H.E., Borchard, G., Ottenhoff, T.H.M., Geluk, A., Pulmonary delivery of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis (2004) Vaccine, 22 (13-14), pp. 1609-1615. , DOI 10.1016/j.vaccine.2003.09.044, PII S0264410X04000817 Kisich, K.O., Gelperina, S., Higgins, M.P., Wilson, S., Shipulo, E., Oganesyan, E., Heifets, L., Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis (2007) International Journal of Pharmaceutics, 345 (1-2), pp. 154-162. , DOI 10.1016/j.ijpharm.2007.05.062, PII S0378517307004796 Karajgi, J.S., Vuas, S.P., A lymphotropic colloidal carrier system for diethylcarbamazine: Preparation and performance evaluation (1994) J. Microencapsul., 11, pp. 539-545 Green, S., Fortier, A., Dijkstra, J., Madsen, J., Swartz, G., Einck, L., Gubish, E., Nancy, C., Liposomal vaccines (1995) Adv. Exp. Med. Biol., 383, pp. 83-92 Hien, T.T., Davis, T.M.E., Chuong, L.V., Ilett, K.F., Sinh, D.X.T., Phu, N.H., Agus, C., Farrar, J., Comparative pharmacokinetics of intramuscular artesunate and artemether in patients with severe falciparum malaria (2004) Antimicrobial Agents and Chemotherapy, 48 (11), pp. 4234-4239. , DOI 10.1128/AAC.48.11.4234-4239.2004 Ng, A.W.K., Wasan, K.M., Lopez-Berestein, G., Development of liposomal polyene antibiotics: An historical perspective (2003) Journal of Pharmacy and Pharmaceutical Sciences, 6 (1), pp. 67-83. , http://www.ualberta.ca/~csps/JPPS6(1)/K.Wasan/antibiotics.pdf Talisuna, A.O., Bloland, P., D'Alessandro, U., History, dynamics, and public health importance of malaria parasite resistance (2004) Clin. Microbiol. Rev., 17, pp. 235-254 Chambers, M.A., Wright, D.C., Brisker, J., Williams, A., Hatch, G., Gavier-Widen, D., Hall, G., Glyn-Hewinson, R., A single dose of killed Mycobacterium bovis BCG in a novel class of adjuvant (Novasome) protects guinea pigs from lethal tube White, N.J., Antimalarial drug resistance (2004) J. Clin. Invest., 113, pp. 1084-1092 Meshnick, S.R., Artemisinin: Mechanism of action, resistance and toxicity (2002) Int. J. Parasitol., 32, pp. 1655-1660 Golenser, J., Waknine, J.H., Krugliak, M., Hunt, N.H., Grau, G.E., Current perspectives on the mechanism of action of artemisinins (2006) Int. J. Parasitol., 36, pp. 1427-1441 http://www.who.int/inf-pr-2000/en/pr2000-02.htmlwww.who.int/intellectualproperty/events/OpenForumCarlosMorel.pdfSoppimath, K.S., Aminabhavi, T.M., Kulkarni, A.R., Rudzinski, W.E., Biodegradable polymeric nanoparticles as drug delivery devices (2001) Journal of Controlled Release, 70 (1-2), pp. 1-20. , DOI 10.1016/S0168-3659(00)00339-4, PII S0168365900003394 Panyam, J., Labhasetwar, V., Biodegradable nanoparticles for drug and gene delivery to cells and tissue (2003) Advanced Drug Delivery Reviews, 55 (3), pp. 329-347. , DOI 10.1016/S0169-409X(02)00228-4 Papagiannaros, A., Bories, C., Demetzos, C., Loiseau, P., Antileishmanial and trypanocidal activities of new miltefosine liposomal formulations (2005) Biomed. Pharmacother., 59, pp. 545-550 Owais, M., Varshney, G.C., Choudhury, A., Chandra, S., Gupta, C.M., Chloroquine encapsulation in malaria-infected erythtocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice (1995) Antimicrob. Agents Chemother., 39, pp. 180-184 Sessa, G., Weissman, G., Phosholipid spherules (liposomes) as a model for biological membranes (1968) J. Lipid Res., 9, pp. 310-315 Couvreur, P., Kante, B., Roland, M., Guioto, P., Bauduin, P., Speiser, P., Polyyanoacrylate nanocapsules as potential lysosomotropic carriers - Preparation, morphological and sorptive properties (1979) J. Pharm. Pharmacol., 31, pp. 331-332 Muller, R.H., Mader, K., Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art (2000) European Journal of Pharmaceutics and Biopharmaceutics, 50 (1), pp. 161-177. , DOI 10.1016/S0939-6411(00)00087-4, PII S0939641100000874 Muller, R.H., Radtke, M., Wissing, S.A., Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations (2002) Adv. Drug Deliv. Rev., 54, pp. S131-S155 www.farmabrasilis,org.br, Accessed: June 22, 2008Gabriels, M., Plaizier-Vercammen, J.A., Physical and chemical evaluation of liposomes, containing Artesunate (2003) J. Pharm. Biomed. Anal., 31, pp. 655-667 Chimanuka, B., Gabriels, M., Detaevernier, M.R., Plaizier-Vercammen, J.A., Preparation of beta-arthemer liposomes, their HPLC-UV evaluation and relevance for clearing recrudescent parasitemia in Plasmodium chabaudi ma laria-infected mice (2002) J. Pharm. Biomed. Anal., 28, pp. 13-22 Postma, N.S., Crommelin, D.J.A., Eling, W.M.C., Zuidema, J., Treatment with liposome-bound recombinant human tumor necrosis factor- α suppresses parasitemia and protects against Plasmodium berghei k173- induced experimental cerebral malaria in mice (1999) Journal of Pharmacology and Experimental Therapeutics, 288 (1), pp. 114-120 Longmuir, K.J., Robertson, R.T., Haynes, S.M., Baratta, J.L., Waring, A.J., Effective targeting of liposomes to liver and hepatocytes in vivo by incorporation of plasmodium amino acid sequence (2006) Pharm. Rev., 23, pp. 759-769 Richards, R.L., Rao, M., Wassef, N.M., Glenn, G.M., Rothwell, S.W., Alving, C.R., Liposomes containing lipid a serve as an adjuvant for induction of antibody and cytotoxic T-cell responses against RTS,S malaria antigen (1998) Infect. Immun., 66, pp. 2859-2865 Alonso, P.L., Sacarlal, J., Aponte, J.J., Leach, A., Macete, E., Milman, J., Mandomando, I., Cohen, J., Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: Randomised controlled trial (2005) Lancet, 366, pp. 2012-2018 Piñero, J., Temporal, R.M., Silva-Gonçalves, A.J., Jimenez, I.A., Bazzocchi, I.L., Oliva, A., Perera, A., Villadares, B., New administration modelo trans-chalcone biodegradable polymer for the treatment of experimental leishmaniasis (2006) Acta Trop., 98, pp. 59-65 Alving, C., Wails, V., Hanson, W., Liposomes in leishmaniasis: Effects of parasite virulence on treatment of experimental leishmaniasis in hamsters (1984) Ann. Trop. Med. Parasitol., 78, pp. 279-2896 New, R.R.C., Chance, M.L., Treatment of experimental cutaneous leishmaniasis by liposome-entrapped pentostam (1980) Acta Tropica, 37 (3), pp. 253-256 Amato, V.S., Rabello, A., Rotondo-Silva, A., Kono, A., Maldonado, T.P.H., Alves, I.C., Floeter-Winter, L.M., Shikanai-Yasuda, M.A., Successful treatment of cutaneous leishmaniasis with lipid formulations of amphotericin B in two immunocompromised patients (2004) Acta Tropica, 92 (2), pp. 127-132. , DOI 10.1016/j.actatropica.2004.06.006, PII S0001706X04001494 Berman, J., Alving, C., Hanson, W., Chapman, W., Lopez-Berestein, G., Antisleishmanial activity of liposome-encapsulated amphotericin B in hamsters and monkeys (1986) Amtimicrob. Agents Chemother., 30, pp. 847-851 Yardley, V., Croft, S.L., A comparison of the activities of three amphotericin B lipid formulations against experimental visceral and cutaneous leishmaniasis (2000) International Journal of Antimicrobial Agents, 13 (4), pp. 243-248. , DOI 10.1016/S0924-8579(99)00133-8, PII S0924857999001338 Adler-Moore, J.P., Proffitt, R.T., Development, characterization, efficacy and mode of action of Ambisome®, a unilamellar liposome formulation of amphotericin B (1993) J. Liposome Res., 3, pp. 429-450 Sarkar, S., Mandal, S., Sinha, J., Mukhopadhyay, S., Das, N., Basu, M.K., Quercetin: Critical evaluation as an antileishmanial agent in vivo in hamsters using different vesicular delivery modes (2002) Journal of Drug Targeting, 10 (8), pp. 573-578. , DOI 10.1080/106118021000072681 Das, N., Mahato, S.B., Naskar, K., Ghosh, D.K., Basu, M.K., Targeting of urea stibamine encapsulated in liposomes to reticuloendothelial system for the treatment of experimental leishmaniasis (1990) Biochemical Medicine and Metabolic Biology, 43 (2), pp. 133-139. , DOI 10.1016/0885-4505(90)90018-V Banerjee, G., Bhaduri, A.N., Basu, M.K., Mannose-coated liposomal hamycin in the treatment of experimental leishmaniasis in hamsters (1994) Biochemical Medicine and Metabolic Biology, 53 (1), pp. 1-7. , DOI 10.1006/bmmb.1994.1050 Banerjee, G., Nandi, G., Mahato, S.B., Pakrashi, A., Basu, M.K., Drug delivery system: Targeting of pentamidines to specific sites using sugar grafted liposomes (1996) Journal of Antimicrobial Chemotherapy, 38 (1), pp. 145-150 Sinha, J., Mukhopadhyay, S., Das, N., Basu, M.K., Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo (2000) Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents, 7 (4), pp. 209-213. , DOI 10.1080/107175400455137 Chakraborty, R., Dasgupta, D., Adhya, S., Basu, M.K., Cationic liposome-encapsulated antisense oligonucleotide mediates efficient killing of intracellular Leishmania (1999) Biochemical Journal, 340 (2), pp. 393-396. , DOI 10.1042/0264-6021:3400393 Dasgupta, D., Adhya, S., Basu, M.K., The effect of β-tubulin-specific antisense oligonucleotide encapsulated in different cationic liposomes on the supression of intracellular L. Donovani parasites in vitro (2002) Journal of Biochemistry, 132 (1), pp. 23-27 Agrawal, A.K., Gupta, C.M., Tuftsin-bearing liposomes in treatment of macrophage-based infections (2000) Advanced Drug Delivery Reviews, 41 (2), pp. 135-146. , DOI 10.1016/S0169-409X(99)00061-7, PII S0169409X99000617 Guru, P.Y., Agrawal, A.K., Singha, U.K., Singhal, A., Gupta, C.M., Drug targeting in Leishmania donovani infections using tuftsin-bearing liposomes as drug vehicles (1989) FEBS Letters, 245 (1-2), pp. 204-208. , DOI 10.1016/0014-5793(89)80222-4 Banerjee, G., Medda, S., Basu, M.K., A novel peptide-grafted liposomal delivery system targeted to macrophages (1998) Antimicrobial Agents and Chemotherapy, 42 (2), pp. 348-351 Kole, L., Das, L., Das, P.K., Synergistic effect of interferon-γ and mannosylated liposome- Incorporated doxorubicin in the therapy of experimental visceral leishmaniasis (1999) Journal of Infectious Diseases, 180 (3), pp. 811-820. , DOI 10.1086/314929 Frezard, F., Schettini, D.A., Rocha, O.G.F., Demicheli, C., Liposomes: Physicochemical and pharmacological properties, applications in antimony-based chemotherapy (2005) Quimica Nova, 28 (3), pp. 511-518 Pal, S., Ravindran, R., Ali, N., Combination therapy using sodium antimony gluconate in stearylamine-bearing liposomes against established and chronic Leishmania donovani infection in BALB/c mice (2004) Antimicrobial Agents and Chemotherapy, 48 (9), pp. 3591-3593. , DOI 10.1128/AAC.48.9.3591-3593.2004 Lala, S., Pramanick, S., Mukhopadhyay, S., Bandyopadhyay, S., Basu, M., Harmine: Evaluation of its antileishmanial properties in various vesicular delivery systems (2004) J. Drug Target., 12, pp. 165-175 Mukherjee, S., Das, L., Kole, L., Karmakar, S., Datta, N., Das, P.K., Targeting of parasite-specific immunoliposome-encapsulated doxorubicin in the treatment of experimental visceral leishmaniasis (2004) Journal of Infectious Diseases, 189 (6), pp. 1024-1034. , DOI 10.1086/382048 Antimisiaris, S.G., Klepetsanis, P., Zachariou, V., Giannopoulou, E., Ioannou, P.V., In vivo distribution of arsenic after i.p. injection of arsonoliposomes in balb-c mice (2005) International Journal of Pharmaceutics, 289 (1-2), pp. 151-158. , DOI 10.1016/j.ijpharm.2004.11.002, PII S0378517304006349 Antimisiaris, S.G., Ioannou, P.V., Loiseau, P.M., In-vitro antileishmanial and trypanocidal activities of arsonoliposomes and preliminary in-vivo distribution in BALB/c mice (2003) Journal of Pharmacy and Pharmacology, 55 (5), pp. 647-652. , DOI 10.1211/002235703765344559 Zagana, P., Klepetsanis, P., Ioannou, P., Loiseau, P.M., Antimisiaris, S.G., Trypanocidal activity of arsonoliposomes: Effect of vesicle lipid composition (2007) Biomed. Pharmacother., 61, pp. 499-504 Schettini, D.A., Ribeiro, R.R., Demicheli, C., Rocha, O.G.F., Melo, M.N., Michalick, M.S.M., Frezard, F., Improved targeting of antimony to the bone marrow of dogs using liposomes of reduced size (2006) International Journal of Pharmaceutics, 315 (1-2), pp. 140-147. , DOI 10.1016/j.ijpharm.2006.01.048, PII S0378517306001402 De Oliveira, F.B., Schettini, D.A., Ferreira, C.S., Rates, B., Rocha, O.G.F., Frézard, F., Demicheli, C., Kinetics of antimony(V) reduction by L-cysteine. Pharmacological implications and application to the determination of antimony in pentavalent antimonial drugs (2006) J. Braz. Chem. Soc., 17, pp. 1642-1650 Christensen, D., Korsholm, K.S., Rosenkrands, I., Lindenstrom, T., Andersen, P., Agger, E.M., Cationic liposomes as vaccine adjuvants (2007) Exp. Rev. Vaccines., 6, pp. 785-796 Banerjee, A., Roychoudhury, J., Ali, N., Stearylamine-bearing cationic liposomes kill Leishmania parasites through surface exposed negatively charged phosphatidylserine (2008) J. Antimicrob. Chemother., 61, pp. 103-110 Mourão, S.C., Costa, P.I., Salgado, H.R.N., Gremião, M.P.D., Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes (2005) Int. J. Pharm., 295, pp. 157-162 Yardley, V., Croft, S.L., In vitro and in vivo activity of amphotericin B-lipid formulations against experimental Trypanosoma cruzi infections (1999) American Journal of Tropical Medicine and Hygiene, 61 (2), pp. 193-197 Yoshihara, E., Tachibana, H., Nakae, T., Trypanocidal activity of the stearylamine-bearing liposome in vitro (1987) Life Sciences, 40 (22), pp. 2153-2159. , DOI 10.1016/0024-3205(87)90005-1 Morilla, M.J., Montanari, J.A., Prieto, M.J., Lopez, M.O., Petray, P.B., Romero, E.L., Intravenous liposomal benznidazole as trypanocidal agent: Increasing drug delivery to liver is not enough (2004) International Journal of Pharmaceutics, 278 (2), pp. 311-318. , DOI 10.1016/j.ijpharm.2004.03.025, PII S0378517304002248 Morilla, M.J., Montanari, J., Frank, F., Malchiodi, E., Corral, R., Petray, P., Romero, E.L., Etanidazole in pH-sensitive liposomes: Design, characterization and in vitro/in vivo anti-Trypanosoma cruzi activity (2005) Journal of Controlled Release, 103 (3), pp. 599-607. , DOI 10.1016/j.jconrel.2004.12.012 Chono, S., Tanino, T., Seki, T., Morimoto, K., Influence of particle size on drug delivery to rat alveolar macrophages following pulmonary administration of ciprofloxacin incorporated into liposomes (2006) Journal of Drug Targeting, 14 (8), pp. 557-566. , DOI 10.1080/10611860600834375, PII T84W515816757402 De Steenwinkel, J.E.M., Van Vianen, W., Ten-Kate, M.T., Verbrugh, H.A., Van Agtmael, M.A., Schiffelers, R.M., Bakker-Woundenberg, I.A.J.M., Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice (2007) J. Antimicrob. Chemother., 60, pp. 1064-1073 Sosunov, V., Mischenko, V., Eruslanov, B., Svetoch, E., Shakina, Y., Stern, N., Majorov, K., Apt, A., Antimycobacterial activity of bacteriocins and their complexes with liposomes (2007) Journal of Antimicrobial Chemotherapy, 59 (5), pp. 919-925. , DOI 10.1093/jac/dkm053 Bhavane, R., Karathanasis, E., Annapragada, A.V., Triggered release of ciprofloxacin from nanostructured agglomerated vesicles (2007) Int. J. Nanomed., 2, pp. 407-418 De Conti, R., Gimenez, S.M.M., Haun, M., Pilli, R.A., De Castro, S.L., Synthesis, D.N., And biological activities of N,N-dimethyl-2-propen-1-amine derivatives (1996) Eur. J. Med. Chem., 31, pp. 915-918 De Souza, A.O., Aily, D.C.G., Sato, D.N., Durán, N., In-vitro activity of N,N-dimethyl-2-propen-1-amines against Mycobacterium tuberculosis (1998) J. Antimicrob. Chemother., 42, pp. 407-408 De Souza, A.O., Santos Junior, R.R., Ferreira-Julio, J.F., Rodriguez, J.A., Melo, P.S., Haun, M., Sato, D.N., Duran, N., Synthesis, antimycobacterial activities and cytotoxicity on V79 of 3-[4′-Y-(1,1′-biphenyl)-4-yl]-N,N-dimethyl-3-(4-X-phenyl)-2- Propen-1-amine derivatives (2001) European Journal of Medicinal Chemistry, 36 (10), pp. 843-850. , DOI 10.1016/S0223-5234(01)01263-6, PII S0223523401012636 De Souza, A.O., Pereira, D.G., Durán, N., Structure and activity of aromatic propenamine derivatives (2002) Ann. Rev. Biomed. Sci., 4, pp. 53-78 De Souza, A.O., Hemerly, F.P., Busollo, A.C., Melo, P.S., Machado, G.M.C., Miranda, C.C., Santa-Rita, R.M., Duran, N., 3-[4′-Bromo-(1,1′-biphenyl)-4-y1]-N,N-dimethyl-3- (2-thienyl)-2-propen-1-amine: Synthesis, cytotoxicity, and leishmanicidal, trypanocidal and antimycobacterial activities (2002) Journal of Antimicrobial Chemotherapy, 50 (5), pp. 629-637 De Souza, A.O., Santos Jr., R.R., Sato, D.N., De Azevedo, M.M.M., Ferreira, D.A., Melo, P.S., Haun, M., Duran, N., Free 2-propen-1-amine derivative and inclusion complexes with β-cyclodextrin: Scanning electron microscopy, dissolution, cytotoxicity and antimycobacterial activity (2004) Journal of the Brazilian Chemical Society, 15 (5), pp. 682-689 De Souza, A.O., Alderete, J.B., Faljoni-Alario, A., Silva, C.L., Durán, N., Physico-Chemical characterization of the inclusion complex between a 2-propen-1-amine derivative and β-cyclodextrin (2005) J. Chil. Chem. Soc., 50, pp. 591-596 De Souza, A.O., Santana, M.H.A., Silva, C.L., Durán, N., Cytotoxicity and antimycobacterial activity of free and liposome-encapsulated 3-(4′-bromo1,1′-biphenyl-4-yl)-3-(4-bromo- phenyl)-N,N-dimethyl-2-propen-1-amine (BBAP) (2009) Open J. Pharm. Sci. Submitted El-Ridy, M.S., Mostafa, D.M., Shehab, A., Nasr, E.A., El-Alim, A.S., Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis (2007) Int. J. Pharm., 330, pp. 82-88 Troshkina, A.O., Salinas, E.G., Sorokoumova, G.M., Kaprelyants, A.S., Selishcheva, A.A., The effect of liposomes on the growth and sensitivity of Mycobacterium smegmatis to isoniazide (2007) Appl. Biochem. Microbiol., 43, pp. 41-46 Rosada, R.S., De La Torre, L.G., Frantz, F.G., Trombone, A.P.F., Zarate-Blades, C.R., Fonseca, D.M., Souza, P.R.M., Coelho-Castelo, A.A.M., Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes (2008) BMC Immunol., 9, p. 38 Bisht, V., Chattree, V., Khanna, N., Rao, D.N., Mycobacterial formulation in liposomes showed decreased expression of CD95/CD95L and caspase activity in T cells of leprosy patients (2005) Curr. Appl. Phys., 5, pp. 189-193 Patel, V.B., Misra, A.N., Encapsulation and stability of clofazimine liposomes (1999) J. Microencapsul., 16, pp. 357-367 Patel, V.B., Misra, A.N., Marfatia, Y.S., A topical dosage form of liposomal clofazimine: Research and clinical implications (1999) Pharmazie, 54, pp. 448-451 Owais, M., Misra-Bhattacharya, S., Haq, W., Gupta, C.M., Immunomodulator tuftsin augments antifilarial activity of diethylcarbamazine against experimental brugian filariasis (2003) J. Drug Target., 11, pp. 247-251 Bajpai, P., Vedi, S., Owais, M., Sharma, S.K., Saxena, P.N., Misra-Bhattacharva, S., Use of liposomized tetracycline in elimination of Wolbachia endobacterium of human lymphatic filariid Brugia malayi in a rodent model (2005) J. Drug Target., 13, pp. 375-381 Leslie, T.A., Goldsmith, P.C., Dowd, P.M., Fungal and parasitic skin infestations - An update in treatment (1993) Curr. Opin. Infect. Dis., 6, pp. 658-667 Mosqueira, V.C.F., Loiseau, P.M., Bories, C., Legrand, P., Devissaguet, J.P., Barrat, G., Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice (2004) Antimicrob. Agents Chemother., 48, pp. 1222-1228 Mosqueira, V.C.F., Legrand, P., Barrat, G., Surface-modified and conventional nanocapsules as novel formulations for parental delivery of halofantrine (2006) J. Nanosci. Nanotechnol., 6, pp. 3193-3202 Leite, E.A., Grabe-Guimaraes, A., Guimaraes, H.N., Machado-Coelho, G.L.L., Barratt, G., Mosqueira, V.C.F., Cardiotoxicity reduction induced by halofantrine entrapped in nanocapsule devices (2007) Life Sciences, 80 (14), pp. 1327-1334. , DOI 10.1016/j.lfs.2006.12.019, PII S0024320507000173 Foger, F., Noonpakdee, W., Loretz, B., Joojuntr, S., Salvenmoser, W., Thaler, M., Bernkop-Schnurch, A., Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles (2006) International Journal of Pharmaceutics, 319 (1-2), pp. 139-146. , DOI 10.1016/j.ijpharm.2006.03.034, PII S0378517306002729 Joshi, M.D., Patravale, V., Nanostructured lipid carrier (NLC) of beta-artemether: Potential in the treatment of cerebral malaria (2005) Proc. 1st. Indo-Japanese Intern. Conf. Adv. Pharm. Res. Technol., 1, p. 110 Bhadra, D., Bhadra, S., Jain, N.K., PEGylated peptide-based dendritic nanoparticulate systems for delivery of artemether (2005) Journal of Drug Delivery Science and Technology, 15 (1), pp. 65-73 Costa, F.T.M., Lopes, S.C.P., Nogueira, P.A., Justo, G.Z., Durán, N., Use of violacein in a free or encapsulated in polymeric systems against malaria (2006), Brazilian Patent PIBr 0506399-506400Mbela, T.K.M., Oupaert, J.H., Dumont, P., Poly(diethylmethylidene malonate) nanoparticles as promaquine delivery system to liver (1992) Int. J. Pharm., 79, pp. 29-38 Labhasetwar, V.D., Dorle, A.K., Nanoparticle-A colloidal drug delivery system for primaquine and metronidazole (1990) J. Control. Release, 12, pp. 113-119 Singh, K.K., Formulation, V.S.K., Antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine (2008) Int. J. Pharm., 347, pp. 136-143 Bajpai, A.K., Choubey, J., Design of gelatin nanoparticles as swelling controlled delivery system for chloroquine phosphate (2006) J. Mater. Sci. Mater. Med., 17, pp. 345-358 Gupta, Y., Jain, A., Jain, S.Y., Transferring-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain (2007) J. Pharm. Pharmacol., 59, pp. 935-940 Costa, F.T.M., Avril, M., Nogueira, P.A., Gysin, J., Cytoadhesion of Plasmodium falciparum-infected erythrocytes and the infected placenta: A two-way pathway (2006) Brazilian Journal of Medical and Biological Research, 39 (12), pp. 1525-1536. , http://www.scielo.br/scielo.php?script=sci_arttext&pid= S0100-879X2006001200003&lng=en&nrm=iso&tlng=en, DOI 10.1590/S0100-879X2006001200003