Artículos de revistas
Volumetric Properties Of Chloroalkanes + Amines Mixtures: Theoretical Analysis Using Theeras-model
Registro en:
International Journal Of Thermophysics. , v. 30, n. 4, p. 1202 - 1212, 2009.
0195928X
10.1007/s10765-009-0632-0
2-s2.0-70349745231
Autor
Torres R.B.
Hoga H.E.
Magalhaes J.G.
Volpe P.L.O.
Institución
Resumen
In this study, experimental data of excess molar volumes of {dichloromethane (DCM), or trichloromethane (TCM) + n-butylamine (n-BA), or +s-butylamine (s-BA), or +t-butylamine (t-BA), or +diethylamine (DEA), or +triethylamine (TEA)} mixtures as a function of composition have been used to test the applicability of the extended real associated solution model (ERAS-Model). The values of the excess molar volume were negative for (DCM + t-BA, or +DEA, or +TEA and TCM + n-BA, or +s-BA, or +DEA, or +TEA) mixtures and present sigmoid curves for (DCM + n-BA, or +s-BA) mixtures over the complete mole-fraction range. The agreement between theoretical and experimental results is discussed in terms of cross-association between the components present in the mixtures. © 2009 Springer Science+Business Media, LLC. 30 4 1202 1212 Tôrres, R.B., Hoga, H.E., (2008) J. Mol. Liquids, 143, p. 17 Magalhães, J.G., Tôrres, R.B., Volpe, P.L.O., (2008) J. Chem. Thermodyn., 40, p. 1402 Tôrres, R.B., Francesconi, A.Z., Volpe, P.L.O., (2003) Fluid Phase Equilib., 210, p. 287 Tôrres, R.B., Francesconi, A.Z., (2002) Fluid Phase Equilib., 200 (2), p. 317 Tôrres, R.B., Francesconi, A.Z., Volpe, P.L.O., (2002) Fluid Phase Equilib., 2001, p. 1 Heintz, A., (1985) Ber. Bunsenges. Phys. Chem., 89, p. 172 Funke, H., Wetzel, M., Heintz, A., (1989) Pure Appl. Chem., 61, p. 1429 Kretschmer, C.B., Wiebe, R., (1954) J. Chem. Phys., 22, p. 1697 Flory, P.J., Orwoll, R.A., Vrij, A., (1964) J. Am. Chem. Soc., 86, p. 3507 Oswal, S.L., Desai, J.S., Ijardar, S.P., Malek, N.I., (2005) Thermochim. Acta, 427, p. 51 Resa, J.M., González, C., Landaluce, S.O., Lanz, J., (2000) J. Chem. Eng. Data, 45, p. 867 Acevedo, I.L., Arancibia, E.L., Katz, M., (1993) J. Solution Chem., 22, p. 191 Acevedo, I.L., Arancibia, E.L., Katz, M., (1992) Thermochim. Acta, 195, p. 129 Acevedo, I.L., Katz, M., (1990) J. Solution Chem., 19, p. 1041 Acevedo, I.L., Katz, M., (1989) Thermochim. Acta, 156, p. 199 Schutte, R.P., Liu, T.C., Hepler, L.H., (1989) Can. J. Chem., 67, p. 446 Hepler, L.G., Kooner, Z.S., Roux-Desgranges, G., Grolier, J.P.E., (1985) J. Solution Chem., 14, p. 579 Kopečni, M.M., Milonjić, S.K., Djordjević, N.M., (1977) J. Chromatogr., 139, p. 1 Handa, Y.P., Fenby, D.V., Jones, D.E., (1975) J. Chem. Thermodyn., 7, p. 337 Chand, A., Handa, Y.P., Fenby, D.V., (1975) J. Chem. Thermodyn., 7, p. 401 Hepler, L.G., Fenby, D.V., (1973) J. Chem. Thermodyn., 5, p. 471 Bondi, A., (1946) J. Phys. Chem., 68, p. 441 Schug, J.C., Chang, W.M., (1971) J. Phys. Chem., 75, p. 938 Martire, D.E., Sheridan, J.P., King, J.W., O'Donnell, S.E., (1976) J. Am. Chem. Soc., 98, p. 3101 Huggins, C.M., Pimentel, G.C., Shoolery, J.N., (1955) J. Chem. Phys., 23, p. 1244 Khare, B.N., Mitra, S.S., Lengyel, G., (1967) J. Chem. Phys., 47, p. 5173 Ratajczak, H., (1972) J. Chem. Phys., 76, p. 3000 Tamres, M., Searles, S., Leighly, E.M., Mohrman, D.W., (1954) J. Am. Chem. Soc., 76, p. 3983 Data, P., Barrow, G.M., (1965) J. Am. Chem. Soc., 87, p. 3053 Lautenberger, W.J., Jones, E.N., Miller, J.G., (1968) J. Am. Chem. Soc., 90, p. 1110 Biaselle, C.J., Miller, J.G., (1974) J. Am. Chem. Soc., 96, p. 3813 Stevenson, D.P., Coppinger, G.M., (1962) J. Am. Chem. Soc., 84, p. 149 Erra-Balsells, R., Frasca, A.R., (1988) Aust. J. Chem., 41, p. 103 Sheridan, J.P., Martire, D.E., Banda, F.P., (1973) J. Am. Chem. Soc., 95, p. 4788 Martire, D.E., Sheridan, J.P., King, J.W., O'Donnell, S.E., (1976) J. Am. Chem. Soc., 98, p. 3101 Dawber, J.G., (1979) J. Chem. Soc. Faraday Trans. i, 75, p. 370 Kinart, C.M., Kinart, W.J., Checińska-Majak, D., Ćwikliń ska, A., (2004) J. Mol. Liquids, 109, p. 19 Oswal, S.L., (2005) Thermochim. Acta, 425, p. 59