dc.creatorGenez T.A.L.
dc.creatorBittencourt L.F.
dc.creatorDa Fonseca N.L.S.
dc.creatorMadeira E.R.M.
dc.date2014
dc.date2015-06-25T17:59:18Z
dc.date2015-11-26T14:58:27Z
dc.date2015-06-25T17:59:18Z
dc.date2015-11-26T14:58:27Z
dc.date.accessioned2018-03-28T22:10:10Z
dc.date.available2018-03-28T22:10:10Z
dc.identifier9781479935116
dc.identifier2014 Ieee Global Communications Conference, Globecom 2014. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 1127 - 1132, 2014.
dc.identifier
dc.identifier10.1109/GLOCOM.2014.7036960
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84924359821&partnerID=40&md5=1e0d2bca9977717532a3080d8f52064a
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87344
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87344
dc.identifier2-s2.0-84924359821
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255859
dc.descriptionIn hybrid clouds, the available bandwidth in inter-cloud links is quite variable. Overestimating the available bandwidth on theses channels at scheduling time can enlarge the makespan and cause deadline misses. In this paper, we propose a procedure for deflating the estimated available bandwidth used as input to cloud schedulers since schedulers are not usually designed to cope with inaccurate information on available bandwidth. The procedure is based on a multiple linear regression procedure which utilizes historical information of previous executions of workflows. Results showed that the proposed procedure can increase the number of valid schedules without increasing the makespan and cost estimations, regardless the variability in the available bandwidth during the execution of an application workflow.
dc.description
dc.description
dc.description1127
dc.description1132
dc.descriptionZhang, Q., Cheng, L., Boutaba, R., Cloud computing: State-of-the-art and research challenges (2010) Journal of Internet Services and Applications, 1 (1), pp. 7-18
dc.descriptionBittencourt, L.F., Madeira, E.R.M., Da Fonseca, N.L.S., Scheduling in hybrid clouds (2012) IEEE Communications Magazine, 50 (9), pp. 42-47
dc.descriptionTaylor, I.J., Deelman, E., Gannon, D.B., Shields, M., Workflows for e-Science (2007) Scientific Workflows for Grids, , Springer
dc.descriptionBittencourt, L.F., Madeira, E.R.M., Da Fonseca, N.L.S., Impact of communication uncertainties on workflow scheduling in hybrid clouds (2012) IEEE Global Communications Conference (IEEE GLOBECOM), , Anaheim, USA, december
dc.descriptionBatista, D.M., Chaves, L.J., Fonseca, N.L., Ziviani, A., Performance analysis of available bandwidth estimation tools for grid networks (2010) Journal of Supercomputing, 53 (1), pp. 103-121. , Jul
dc.descriptionRahman, M., Li, X., Palit, H., Hybrid heuristic for scheduling data analytics workflow applications in hybrid cloud environment (2011) IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), pp. 966-974
dc.descriptionBittencourt, L.F., Madeira, E.R.M., HCOC: A cost optimization algorithm for workflow scheduling in hybrid clouds (2011) Journal of Internet Services and Applications, 2 (3), pp. 207-227. , Dec
dc.descriptionVecchiola, C., Calheiros, R.N., Karunamoorthy, D., Buyya, R., Deadline-driven provisioning of resources for scientific applications in hybrid clouds with aneka (2012) Future Gener. Comput. Syst., 28 (1), pp. 58-65. , jan
dc.descriptionAllen, G., Angulo, D., Foster, I., Lanfermann, G., Liu, C., Radke, T., Seidel, E., Shalf, J., The cactus worm: Experiments with dynamic resource discovery and allocation in a grid environment (2001) Journal of High Performance Computing Applications, 15, p. 2001
dc.descriptionSakellariou, R., Zhao, H., A low-cost rescheduling policy for efficient mapping of workflows on grid systems (2004) Scientific Programming, 12 (4), pp. 253-262. , Dec
dc.descriptionBatista, D.M., Da Fonseca, N.L.S., Miyazawa, F.K., Granelli, F., Self-adjustment of resource allocation for grid applications (2008) Computer Networks, 52 (9), pp. 1762-1781. , Jun
dc.descriptionBatista, D.M., Da Fonseca, N.L.S., Robust scheduler for grid networks under uncertainties of both application demands and resource availability (2011) Computer Networks, 55 (1), pp. 3-19
dc.descriptionWang, G., Ng, T.S.E., The impact of virtualization on network performance of amazon EC2 data center (2010) 29th Conference on Information Communications, pp. 1163-1171
dc.descriptionDeelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Katz, D.S., Pegasus: A framework for mapping complex scientific workflows onto distributed systems (2005) Scientific Programming Journal, 13 (3), pp. 219-237
dc.descriptionRamakrishnan, A., Singh, G., Zhao, H., Deelman, E., Sakellariou, R., Vahi, K., Blackburn, K., Samidi, M., Scheduling dataintensive workflows onto storage-constrained distributed resources (2007) IEEE International Symposium on Cluster Computing and the Grid, pp. 401-409
dc.descriptionSanghrajka, S., Mahajan, N., Sion, R., Cloud performance benchmark series-network performance: Amazon EC2 (2011) Stony Brook University, Tech. Rep.
dc.descriptionSanghrajka, S., Sion, R., Cloud performance benchmark series-network performance: Rackspace com (2011) Stony Brook University, Tech. Rep.
dc.descriptionCasanova, H., Legrand, A., Zagorodnov, D., Berman, F., Heuristics for scheduling parameter sweep applications in grid environments (2000) Heterogeneous Computing Workshop, pp. 349-363
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation2014 IEEE Global Communications Conference, GLOBECOM 2014
dc.rightsfechado
dc.sourceScopus
dc.titleRefining The Estimation Of The Available Bandwidth In Inter-cloud Links For Task Scheduling
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución