dc.creatorVidal N.
dc.creatorBarbosa H.
dc.creatorJacob S.
dc.creatorArruda M.
dc.date2015
dc.date2015-06-25T12:51:22Z
dc.date2015-11-26T14:58:25Z
dc.date2015-06-25T12:51:22Z
dc.date2015-11-26T14:58:25Z
dc.date.accessioned2018-03-28T22:10:06Z
dc.date.available2018-03-28T22:10:06Z
dc.identifier
dc.identifierFood Chemistry. Elsevier Ltd, v. 180, n. , p. 288 - 294, 2015.
dc.identifier3088146
dc.identifier10.1016/j.foodchem.2015.02.051
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84923335939&partnerID=40&md5=cfdabe462809a98d1ced655160fb49bb
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85243
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85243
dc.identifier2-s2.0-84923335939
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255851
dc.descriptionGenetically modified foods are a major concern around the world due to the lack of information concerning their safety and health effects. This work evaluates differences, at the proteomic level, between two types of crop samples: transgenic (MON810 event with the Cry1Ab gene, which confers resistance to insects) and non-transgenic maize flour commercialized in Brazil. The 2-D DIGE technique revealed 99 differentially expressed spots, which were collected in 2-D PAGE gels and identified via mass spectrometry (nESI-QTOF MS/MS). The abundance of protein differences between the transgenic and non-transgenic samples could arise from genetic modification or as a result of an environmental influence pertaining to the commercial sample. The major functional category of proteins identified was related to disease/defense and, although differences were observed between samples, no toxins or allergenic proteins were found.
dc.description180
dc.description
dc.description288
dc.description294
dc.descriptionArruda, S.C., Barbosa, H.S., Azevedo, R.A., Arruda, M.A., Two-dimensional difference gel electrophoresis applied for analytical proteomics: Fundamentals and applications to the study of plant proteomics (2011) Analyst, 136, pp. 4119-4126
dc.descriptionArruda, S.C., Barbosa, H.S., Azevedo, R.A., Arruda, M.A., Comparative studies focusing on transgenic through cp4EPSPS gene and non-transgenic soybean plants: An analysis of protein species and enzymes (2013) Journal of Proteomics, 93, pp. 107-116
dc.descriptionBarbosa, H.S., Arruda, S.C., Azevedo, R.A., Arruda, M.A., New insights on proteomics of transgenic soybean seeds: Evaluation of differential expressions of enzymes and proteins (2012) Analytical and Bioanalytical Chemistry, 402 (1), pp. 299-314
dc.descriptionBarros, E., Lezar, S., Anttonen, M.J., Dijk, J.P., Röhlig, R.M., Kok, E.J., Comparison of two GM maize varieties with a near isogenic non-GM variety using transcriptomics, proteomics and metabolomics (2010) Plant Biotechnology Journal, 8 (4), pp. 436-451
dc.descriptionBaudo, M.M., Lyons, R., Powers, S., Pastori, G.M., Edwards, K.J., Holdsworth, M.J., Transgenesis has less impact on the transcriptome of wheat grain than conventional breeding (2006) Plant Biotechnology Journal, 4, pp. 369-380
dc.descriptionBen Thabet, I., Francis, F., Pauwd, E., Besbesa, S., Attiaa, H., Deroannec, C., Characterisation of proteins from date palm sap (Phoenix dactylifera L.) by a proteomic approach (2010) Food Chemistry, 123, pp. 765-770
dc.descriptionBerkelman, T., Stenstedt, T., (1998) 2-D Electrophoresis: Principles and Methods, , Amersham Biosciences Uppsala 101p
dc.descriptionBevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana (1998) Nature, 391, pp. 485-488
dc.descriptionBrandao, A.R., Barbosa, H.S., Arruda, M.A.Z., Image analysis of two dimensional gel electrophoresis for comparative proteomics of transgenic and non-transgenic soybean seeds (2010) Journal of Proteomics, 73, pp. 1433-1440
dc.descriptionCandiano, G., Bruschi, M., Musante, L., Santucci, L., Ghiggeri, G.M., Carnemolla, B., Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis (2004) Electrophoresis, 25, pp. 1327-1333
dc.descriptionCatchpole, G.S., Beckmann, M., Enot, D.P., Mondhe, M., Zywicki, B., Taylor, J., Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops (2005) Proceedings of the National Academy of Sciences of USA, 102, pp. 14458-14462
dc.descriptionColl, A., Nadal, A., Collado, R., Capellades, G., Kubista, M., Messeguer, J., Natural variation explains most transcriptomic changes among maize plants of MON810 and comparable non-GM varieties subjected to two N-fertilization farming practices (2010) Plant Molecular Biology, 73 (3), pp. 349-362
dc.descriptionEFSA, Guidance document of the Scientific Panel on Genetically Modified Organisms for the risk assessment of genetically modified plants and derived food and feed (2006) EFSA Journal, 99, pp. 1-100
dc.descriptionFrewer, L., Lassen, J., Kettlitz, B., Scholderer, J., Beekman, V., Berdal, K.G., Societal aspects of genetically modified foods (2004) Food and Chemical Toxicology, 42, pp. 1181-1193
dc.descriptionHauser, N., Paulsson, M., Native cartilage matrix protein (CMP). A compact trimer of subunits assembled via a coiled-coil α-helix (1994) Journal of Biological Chemistry, 269, pp. 25747-25753
dc.descriptionIoset, J.R., Urbaniak, B., Ndjoko-Ioset, K., Wirth, J., Martin, F., Gruissem, W., Flavonoid profiling among wild type and related GM wheat varieties (2007) Plant Molecular Biology, 65, pp. 645-654
dc.descriptionJames, C., Global status of commercialized biotech/GM crops (2012) ISAAA Brief, 2012, p. 44
dc.descriptionJin, Z., Cai, G.L., Li, X.M., Gao, F., Yang, J.J., Lu, J., Comparative proteomic analysis of green malts between barley (Hordeum vulgare) cultivars (2014) Food Chemistry, 151, pp. 266-270
dc.descriptionLehesranta, S.J., Davis, H.V., Shepherd, L.V.T., Nunan, N., McNicol, J.W., Auriola, S., Comparison of tuber proteomes of potato varieties, landraces and genetically modified lines (2005) Plant Physiology, 138, pp. 1690-1699
dc.descriptionLin, S.T., Chou, H.C., Chang, S.J., Chen, Y.W., Lyu, P.C., Wang, W.C., Proteomic analysis of proteins responsible for the development of doxorubicin resistance in human uterine cancer cells (2012) Journal of Proteomics, 75 (18), pp. 5822-5847. , 22
dc.descriptionLiu, T., Zhang, L., Yuan, Z., Hu, X., Lu, M., Wang, W., Identification of proteins regulated by ABA in response to combined drought and heat stress in maize roots (2013) Acta Physiologiae Plantarum, 35, pp. 501-513
dc.descriptionMaciel, B.C.N., Barbosa, H.S., Pessoa, G.S., Salazar, M.M., Pereira, G.A.G., Gonçalves, D.C., Comparative proteomics and metallomics studies in Arabidopsis thaliana leaf tissues: Evaluation of the selenium addition in transgenic and nontransgenic plants using two-dimensional difference gel electrophoresis and laser ablation imaging (2014) Proteomics, 14, pp. 904-912
dc.description(2012) MAPA (Brazilian Livestock and Agricultural Ministry), , http://www.agricultura.gov.br/portal/pls/portal/!PORTAL.wwpob_page.show?_docname=1324452.PDF, List of GMO authorized in Brazil Accessed 04.08.2014
dc.descriptionMatsuoka, T., Kawashima, Y., Akiyama, H., Miura, H., Goda, Y., Kusakabe, Y., A method of detecting recombinant DNAs from four lines of genetically modified maize (2000) Journal of the Food Hygienic Society of Japan, 41, pp. 137-143
dc.description(2002) Safety Assessment of YieldGard® Insect-Protected Corn Event MON 810, , http://www.monsanto.com/products/Documents/safety-summaries/yieldgard_corn_es.pdf, Monsanto Accessed 10.01.14
dc.descriptionNakajima, O., Teshima, R., Takagi, K., Okunuki, H., Sawada, J., ELISA method for monitoring human serum IgE specific for Cry1Ab introduced into genetically modified corn (2007) Regulatory Toxicology and Pharmacology, 47 (1), pp. 90-95
dc.descriptionOECD, (1993) Safety Evaluation of Foods Derived by Modern Biotechnology: Concept and Principles, , Organization for Economic Co-operation and Development Paris, France 1-83
dc.descriptionPasini, G., Simonato, B., Curioni, A., Vincenzi, S., Cristaudo, A., Santucci, B., IgE-mediated allergy to corn: A 50 kDa protein, belonging to the Reduced Soluble Proteins, is a major allergen (2002) Allergy, 57 (2), pp. 98-106
dc.descriptionPastorello, E.A., Farioli, L., Pravettoni, V., Ispano, M., Scibola, E., Trambaioli, C., The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein (2000) Journal of Allergy and Clinical Immunology, 106 (4), pp. 744-751
dc.descriptionPastorello, E.A., Pompei, C., Pravettoni, V., Farioli, L., Calamari, A.M., Scibilia, J., Lipid-transfer protein is the major maize allergen maintaining IgE-binding activity after cooking at 100 °c, as demonstrated in anaphylactic patients and patients with positive double-blind, placebo-controlled food challenge results (2003) Journal of Allergy and Clinical Immunology, 112 (4), pp. 775-783
dc.descriptionPompa, M., Giuliani, M.M., Palermo, C., Agriesti, F., Centonze, D., Flagella, Z., Comparative analysis of gluten proteins in three durum wheat cultivars by a proteomic approach (2013) Journal of Agricultural Food Chemistry, 61 (11), pp. 2606-2617
dc.descriptionSchnepf, E., Crickmore, M., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Bacillus thuringiensis and its pesticidal crystal proteins (1998) Microbiology and Molecular Biology Reviews, 62 (3), pp. 775-806
dc.descriptionSussulini, A., Garcia, J.S., Mesko, M.F., Moraes, D.P., Flores, E.M.M., Pérez, C.A., Evaluation of soybean seed protein extraction focusing on metalloprotein analysis (2007) Microchimica Acta, 158, pp. 173-180
dc.descriptionUniversal Protein Resource, , http://www.uniprot.org/, UniProt Accessed 14.11.13
dc.descriptionWang, Y., Xu, W., Zhao, W., Hao, J., Luo, Y., Tang, X., Comparative analysis of the proteomic and nutritional composition of transgenic rice seeds with Cry1ab/ac genes and their non-transgenic counterparts (2012) Journal of Cereal Science, 55, pp. 226-233
dc.descriptionWeichel, M., Vergoossen, N.J., Bonomi, S., Scibilia, J., Ortolani, C., Ballmer-Weber, B.K., Screening the allergenic repertoires of wheat and maize with sera from double-blind, placebo-controlled food challenge positive patients (2006) Allergy, 61 (1), pp. 128-135
dc.descriptionWilkins, M.R., Williams, K.L., Appel, R.D., Hochstrasser, D.F., Introduction to the Proteome (1997) Proteome Research: New Frontiers in Functional Genomics, p. 215. , Springer: Berlin
dc.descriptionFAO/WHO, Safety Aspects of Genetically Modified Foods of Plants Origin (2000) Report of A Joint FAO/WHO Expert Consultation on Foods Derived from Biotechnology, pp. 1-35. , FAO/WHO Headquarters Geneva Switzerland 29 May-2 June 2000. Food and Agriculture Organization of the United Nations
dc.descriptionXu, C., Garrett, W.M., Sullivan, J.H., Caperna, T.J., Natarajan, S., Separation and identification of soybean leaf proteins with two-dimensional gel electrophoresis and mass spectrometry (2006) Phytochemistry, 67, pp. 2431-2440
dc.descriptionZimmermann, A., Liniger, M., Luthy, J., Pauli, U., A sensitive detection method for genetically modified MaisGard (TM) crop using a nested PCR-system (1998) Lebensmittel-Wissenschaft & Technologie, 31, pp. 664-667
dc.descriptionZolla, L., Rinalducci, S., Antonioli, P., Righetti, P.G., Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications (2008) Journal of Proteome Research, 7, pp. 1850-1861
dc.languageen
dc.publisherElsevier Ltd
dc.relationFood Chemistry
dc.rightsfechado
dc.sourceScopus
dc.titleComparative Study Of Transgenic And Non-transgenic Maize (zea Mays) Flours Commercialized In Brazil, Focussing On Proteomic Analyses
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución