dc.creator | Fonseca A.F. | |
dc.creator | Zhang H. | |
dc.creator | Cho K. | |
dc.date | 2015 | |
dc.date | 2015-06-25T12:51:06Z | |
dc.date | 2015-11-26T14:58:17Z | |
dc.date | 2015-06-25T12:51:06Z | |
dc.date | 2015-11-26T14:58:17Z | |
dc.date.accessioned | 2018-03-28T22:10:00Z | |
dc.date.available | 2018-03-28T22:10:00Z | |
dc.identifier | | |
dc.identifier | Carbon. Elsevier Ltd, v. 84, n. 1, p. 365 - 374, 2015. | |
dc.identifier | 86223 | |
dc.identifier | 10.1016/j.carbon.2014.12.026 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-84922254287&partnerID=40&md5=08df3351a525b1cd2bfe8845bfa68920 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/85209 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/85209 | |
dc.identifier | 2-s2.0-84922254287 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1255828 | |
dc.description | Ab initio predictions for the stability of different graphene oxide (GO) structures have been shown to conflict with experimental observations. While ab initio studies predict that the most stable GOs are fully oxygen-covered (either with epoxide or hydroxyl), stable asproduced GOs are partially oxygen-covered and predominantly epoxide-covered structures. Although this discrepancy is being examined in terms of calculations of free energies of GOs and large diffusion energy-barriers for oxygen groups on graphene, there is still a lack of understanding on the energetic properties of GOs using classical molecular dynamics, which is able to investigate their structural distortion. Here, using the reactive empirical bond order (REBO) molecular dynamics potential, we compute the free energy and binding energy of GOs at different oxygen concentrations and epoxide to hydroxyl ratios, as well as the distortion energies of graphene lattice. Although epoxide causes more distortion on the carbon hexagonal planar structure, it provides more stability to the GO structure. The difference between free energy and binding energy of GOs is shown to be independent of oxygen coverage. These results allow gaining more insight on the issue of GO stability and show that REBO can capture most of experimental properties of GOs. | |
dc.description | 84 | |
dc.description | 1 | |
dc.description | 365 | |
dc.description | 374 | |
dc.description | Wu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., De Heer, W.A., Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics (2008) Phys Rev Lett, 101, p. 026801. , http://dx.doi.org/10.1103/PhysRevLett.101.026801 | |
dc.description | Mattson, E.C., Pu, H., Cui, S., Schofield, M.A., Rhim, S., Lu, G., Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum (2011) ACS Nano, 5 (12), pp. 9710-9717. , http://dx.doi.org/10.1021/nn203160n | |
dc.description | Jung, I., Dikin, D.A., Piner, R.D., Ruoff, R.S., Tunable electrical conductivity of individual graphene oxide sheets reduced at ''low'' temperatures (2008) Nano Lett, 8 (12), pp. 4283-4287. , http://dx.doi.org/10.1021/nl8019938 | |
dc.description | Yan, J.-A., Xian, L., Chou, M.Y., Structural and electronic properties of oxidized graphene (2009) Phys Rev Lett, 103, p. 086802. , http://dx.doi.org/10.1103/PhysRevLett.103.086802 | |
dc.description | Balog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Bandgap opening in graphene induced by patterned hydrogen adsorption (2010) Nat Mater, 9, pp. 315-319. , http://dx.doi.org/10.1038/NMAT2710 | |
dc.description | Schniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Functionalized single graphene sheets derived from splitting graphite oxide (2006) J Phys Chem B, 110 (17), pp. 8535-8539. , http://dx.doi.org/10.1021/jp060936f | |
dc.description | Park, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat Nanotechnol, 4, pp. 217-224. , http://dx.doi.org/10.1038/nnano.2009.58 | |
dc.description | Gao, W., Alemany, L.B., Ci, L., Ajayan, P.M., New insights into the structure and reduction of graphite oxide (2009) Nat Chem, 1, pp. 403-408. , http://dx.doi.org/10.1038/NCHEM.281 | |
dc.description | Mathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Controlled, stepwise reduction and band gap manipulation of graphene oxide (2012) J Phys Chem Lett, 3 (8), pp. 986-991. , http://dx.doi.org/10.1021/jz300096t | |
dc.description | Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Improved synthesis of graphene oxide (2010) ACS Nano, 4 (8), pp. 4806-4814. , http://dx.doi.org/10.1021/nn1006368 | |
dc.description | Fan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide (2011) ACS Nano, 5 (1), pp. 191-198. , http://dx.doi.org/10.1021/nn102339t | |
dc.description | Acik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y.J., Unusual infrared-absorption mechanism in thermally reduced graphene oxide (2010) Nat Mater, 9, pp. 840-845. , http://dx.doi.org/10.1038/nmat2858 | |
dc.description | Tian, H., Xie, D., Yang, Y., Ren, T.L., Zhang, G., Wang, Y.F., A novel solid-state thermal rectifier based on reduced graphene oxide (2012) Sci Rep, 2, p. 523. , http://dx.doi.org/10.1038/srep00523 | |
dc.description | Xiao, N., Dong, X., Song, L., Liu, D., Tay, Y., Wu, S., Enhanced thermopower of graphene films with oxygen plasma treatment (2011) ACS Nano, 5 (4), pp. 2749-2755. , http://dx.doi.org/10.1021/nn2001849 | |
dc.description | Eda, G., Lin, Y.Y., Miller, S., Chen, C.W., Su, W.F., Chhowalla, M., Transparent and conducting electrodes for organic electronics from reduced graphene oxide (2008) Appl Phys Lett, 92, p. 233305. , http://dx.doi.org/10.1063/1.2937846 | |
dc.description | Eda, G., Fanchini, G., Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material (2008) Nat Nanotechnol, 3, pp. 270-274. , http://dx.doi.org/10.1038/nnano.2008.83 | |
dc.description | Wang, L., Lee, K., Sun, Y.-Y., Lucking, M., Chen, Z., Zhao, J.J., Graphene oxide as an ideal substrate for hydrogen storage (2009) ACS Nano, 3 (10), pp. 2995-3000. , http://dx.doi.org/10.1021/nn900667s | |
dc.description | Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Preparation and characterization of graphene oxide paper (2007) Nat (London), 448, pp. 457-460. , http://dx.doi.org/10.1038/nature06016 | |
dc.description | Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Functionalized graphene sheets for polymer nanocomposites (2008) Nat Nanotechnol, 3, pp. 327-331. , http://dx.doi.org/10.1038/nnano.2008.96 | |
dc.description | Vinod, S., Tiwary, C.S., Autreto, P.A.S., Taha-Tijerina, J., Ozden, S., Chipara, A.C., Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers (2014) Nat Commun, 5, p. 4541. , http://dx.doi.org/10.1038/ncomms5541 | |
dc.description | Boukhvalov, D.W., Katsnelson, M.I., Modeling of graphite oxide (2008) J Am Chem Soc, 130 (32), pp. 10697-10701. , http://dx.doi.org/10.1021/ja8021686 | |
dc.description | Lahaye, R.J.W.E., Jeong, H.K., Park, C.Y., Lee, Y.H., Density functional theory study of graphite oxide for different oxidation levels (2009) Phys Rev B, 79, p. 125435. , http://dx.doi.org/10.1103/PhysRevB.79.125435 | |
dc.description | Wang, L., Sun, Y.Y., Lee, K., West, D., Chen, Z.F., Zhao, J.J., Stability of graphene oxide phases from first-principles calculations (2010) Phys Rev B, 82, p. 161406R. , http://dx.doi.org/10.1103/PhysRevB.82.161406 | |
dc.description | Lu, N., Yin, D., Li, Z., Yang, J., Structure of graphene oxide: Thermodynamics versus kinetics (2011) J Phys Chem C, 115 (24), pp. 11991-11995. , http://dx.doi.org/10.1021/jp204476q | |
dc.description | Liu, L., Wang, L., Gao, J., Zhao, J., Gao, X., Chen, Z., Amorphous structural models for graphene oxides (2012) Carbon, 50, pp. 1690-1698. , http://dx.doi.org/10.1016/j.carbon.2011.12.014 | |
dc.description | Kim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y.J., Berger, C., Roomtemperature metastability of multilayer graphene oxide films (2012) Nat Mater, 11, pp. 544-549. , http://dx.doi.org/10.1038/nmat3316 | |
dc.description | Huang, B., Xiang, H., Xu, Q., Wei, S.-H., Overcoming the phase inhomogeneity in chemically functionalized graphene: The case of graphene oxides (2013) Phys Rev Lett, 110, p. 085501. , http://dx.doi.org/10.1103/PhysRevLett.110.085501 | |
dc.description | Zhou, S., Bongiorno, A., Origin of the chemical and kinetic stability of graphene oxide (2013) Sci Rep, 3, p. 2484. , http://dx.doi.org/10.1038/srep02484 | |
dc.description | Andremkhoyan, K., Contryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Atomic and electronic structure of graphene-oxide (2009) Nano Lett, 9 (3), pp. 1058-1063. , http://dx.doi.org/10.1021/nl8034256 | |
dc.description | Saxena, S., Tyson, T.A., Shukla, S., Negusse, E., Chen, H., Bai, J., Investigation of structural and electronic properties of graphene oxide (2011) Appl Phys Lett, 99, p. 013104. , http://dx.doi.org/10.1063/1.3607305 | |
dc.description | Lee, G., Lee, B., Kim, J., Cho, K., Ozone adsorption on graphene: Ab initio study and experimental validation (2009) J Phys Chem C, 113 (32), pp. 14225-14229. , http://dx.doi.org/10.1021/jp904321n | |
dc.description | Yamaguchi, H., Murakami, K., Eda, G., Fujita, T., Guan, P., Wang, W., Field emission from atomically thin edges of reduced graphene oxide (2011) ACS Nano, 5 (6), pp. 4945-4952. , http://dx.doi.org/10.1021/nn201043a | |
dc.description | Xu, Z., Xue, K., Engineering graphene by oxidation: A firstprinciples study (2010) Nanotechnology, 21, p. 045704. , http://dx.doi.org/10.1088/0957-4484/21/4/045704 | |
dc.description | Lee, G., Cho, K., Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation (2009) Phys Rev B, 79, p. 165440. , http://dx.doi.org/10.1103/PhysRevB.79.165440 | |
dc.description | Lee, G., Kim, K.S., Cho, K., Theoretical study of the electron transport in graphene with vacancy and residual oxygen defects after high-temperature reduction (2011) J Phys Chem C, 115 (19), pp. 9719-9725. , http://dx.doi.org/10.1021/jp111841w | |
dc.description | Acik, M., Lee, G., Mattevi, C., Pirkle, A., Wallace, R.M., Chhowalla, M., The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy (2011) J Phys Chem C, 115 (40), pp. 19761-19781. , http://dx.doi.org/10.1021/jp2052618 | |
dc.description | Gong, C., Acik, M., Abolfath, R.M., Chabal, Y., Cho, K., Graphitization of graphene oxide with ethanol during thermal reduction (2012) J Phys Chem C, 116 (18), pp. 9969-9979. , http://dx.doi.org/10.1021/jp212584t | |
dc.description | Abolfath, R., Cho, K., Computational studies for reduced graphene oxide in hydrogen-rich environment (2012) J Phys Chem A, 116 (7), pp. 1820-1827. , http://dx.doi.org/10.1021/jp2107439 | |
dc.description | Srinivasan, S.G., Van Duin, A.C.T., Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field (2011) J Phys Chem A, 115 (46), pp. 13269-13280. , http://dx.doi.org/10.1021/jp207179x | |
dc.description | Bagri, A., Mattevi, C., Acik, M., Chabal, Y.J., Chhowalla, M., Shenoy, V.B., Structural evolution during the reduction of chemically derived graphene oxide (2010) Nat Chem, 2, pp. 581-587. , http://dx.doi.org/10.1038/nchem.686 | |
dc.description | Suk, J.W., Piner, R.D., An, J., Ruoff, R.S., Mechanical properties of monolayer graphene oxide (2010) ACS Nano, 4 (11), pp. 6557-6564. , http://dx.doi.org/10.1021/nn101781v | |
dc.description | Medhekar, N.V., Ramasubramaniam, A., Ruoff, R.S., Shenoy, V.B., Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties (2010) ACS Nano, 4 (4), pp. 2300-2306. , http://dx.doi.org/10.1021/nn901934u | |
dc.description | Fonseca, A.F., Lee, G., Borders, T.L., Zhang, H., Kemper, T.W., Shan, T.R., Reparameterization of the REBO-CHO potential for graphene oxide molecular dynamics simulation (2011) Phys Rev B, 84, p. 075460. , http://dx.doi.org/10.1103/PhysRevB.84.075460 | |
dc.description | Zhang, H., Fonseca, A.F., Cho, K., Tailoring thermal transport property of graphene through oxygen functionalization (2014) J Phys Chem C, 118 (3), pp. 1436-1442. , http://dx.doi.org/10.1021/jp4096369 | |
dc.description | Mu, X., Wu, X., Zhang, T., Go, D.B., Luo, T., Thermal transport in graphene oxide-From ballistic extreme to amorphous limit (2014) Sci Rep, 4, p. 3909. , http://dx.doi.org/10.1038/srep03909 | |
dc.description | Lin, S., Buehler, M.J., Thermal transport in monolayer graphene oxide: Atomistic insights into phonon engineering through surface chemistry (2014) Carbon, 77, pp. 351-359. , http://dx.doi.org/10.1016/j.carbon.2014.05.038 | |
dc.description | Ni, B., Lee, K.-H., Sinnott, S.B., A reactive empirical bond order (REBO) potential for hydrocarbon-oxygen interactions (2004) J Phys: Condens Matter, 16, pp. 7261-7275. , http://dx.doi.org/10.1088/0953-8984/16/41/008 | |
dc.description | Chenoweth, K., Van Duin, A.C.T., Goddard, W.A., III, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation (2008) J Phys Chem A, 112 (5), pp. 1040-1053. , http://dx.doi.org/10.1021/jp709896w | |
dc.description | Hummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J Am Chem Soc, 80 (6). , http://dx.doi.org/10.1021/ja01539a017.1339-1339 | |
dc.description | Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., The chemistry of graphene oxide (2010) Chem Soc Rev, 39, pp. 228-240. , http://dx.doi.org/10.1039/B917103G | |
dc.description | Szabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Evolution of surface functional groups in a series of progressively oxidized graphite oxides (2006) Chem Mater, 18 (11), pp. 2740-2749. , http://dx.doi.org/10.1021/cm060258+ | |
dc.description | Lerf, A., He, H., Riedl, T., Forster, M., Klinowski, J., 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives (1997) Solid State Ionics, 101-103, pp. 857-862. , http://dx.doi.org/10.1016/S0167-2738(97)00319-6 | |
dc.description | He, H., Klinowski, J., Forster, M., Lerf, A., A new structural model for graphite oxide (1998) Chem Phys Lett, 287 (1-2), pp. 53-56. , http://dx.doi.org/10.1016/S0009-2614(98)00144-4 | |
dc.description | Lerf, A., He, H., Forster, M., Klinowski, J., Structure of graphite oxide revisited (1998) J Phys Chem B, 102 (23), pp. 4477-4482. , http://dx.doi.org/10.1021/jp9731821 | |
dc.description | Cassagneau, T., Guerin, F., Fendler, J.H., Preparation and characterization of ultrathin films layer-by-layer selfassembled from graphite oxide nanoplatelets and polymers (2000) Langmuir, 16 (18), pp. 7318-7324. , http://dx.doi.org/10.1021/la000442o | |
dc.description | Hontoria-Lucas, C., López-Peinado, A.J., De López-González, J.D., Rojas-Cervantes, M.L., Martín-Aranda, R.M., Study of oxygencontaining groups in a series of graphite oxides: Physical and chemical characterization (1995) Carbon, 33 (11), pp. 1585-1592. , http://dx.doi.org/10.1016/0008-6223(95)00120-3 | |
dc.description | Szabó, T., Tombácz, E., Illés, E., Dékány, I., Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides (2006) Carbon, 44 (3), pp. 537-545. , http://dx.doi.org/10.1016/j.carbon.2005.08.005 | |
dc.description | Shin, H.-J., Kim, K.K., Benayad, A., Yoon, S.-M., Park, H.K., Jung, I.-S., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance (2009) Adv Funct Mater, 19 (12), pp. 1987-1992 | |
dc.description | Zhu, J., Andres, C.M., Xu, J., Ramamoorthy, A., Tsotsis, T., Kotov, N.A., Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies (2012) ACS Nano, 6 (9), pp. 8357-8365. , http://dx.doi.org/10.1021/nn3031244 | |
dc.description | Reuter, K., Scheffler, M., Composition, structure, and stability of RuO2(110) as a function of oxygen pressure (2002) Phys Rev B, 65, p. 035406. , http://dx.doi.org/10.1103/PhysRevB.65.035406 | |
dc.description | CODATA recommended key values for thermodynamics, 1977. Report of the CODATA Task Group on key values of thermodynamics, 1977 (1978) J Chem Thermodyn, 10 (10), pp. 903-906. , http://dx.doi.org/10.1016/0021-9614(78)90050-2 | |
dc.description | Yan, J.-A., Chou, M.Y., Oxidation functional groups on graphene: Structural and electronic properties (2010) Phys Rev B, 82 (12), p. 125403. , http://dx.doi.org/10.1103/PhysRevB.82.125403 | |
dc.description | Jung, I., Field, D.A., Clark, N.J., Zhu, Y., Yang, D., Piner, R.D., Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption (2009) J Phys Chem C, 113 (43), pp. 18480-18486. , http://dx.doi.org/10.1021/jp904396j | |
dc.description | Lu, N., Huang, Y., Li, H., Li, Z., Yang, J., First principles nuclear magnetic resonance signatures of graphene oxide (2010) J Chem Phys, 133, p. 034502. , http://dx.doi.org/10.1063/1.3455715 | |
dc.language | en | |
dc.publisher | Elsevier Ltd | |
dc.relation | Carbon | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Formation Energy Of Graphene Oxide Structures: A Molecular Dynamics Study On Distortion And Thermal Effects | |
dc.type | Artículos de revistas | |