dc.creatorFonseca A.F.
dc.creatorZhang H.
dc.creatorCho K.
dc.date2015
dc.date2015-06-25T12:51:06Z
dc.date2015-11-26T14:58:17Z
dc.date2015-06-25T12:51:06Z
dc.date2015-11-26T14:58:17Z
dc.date.accessioned2018-03-28T22:10:00Z
dc.date.available2018-03-28T22:10:00Z
dc.identifier
dc.identifierCarbon. Elsevier Ltd, v. 84, n. 1, p. 365 - 374, 2015.
dc.identifier86223
dc.identifier10.1016/j.carbon.2014.12.026
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84922254287&partnerID=40&md5=08df3351a525b1cd2bfe8845bfa68920
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85209
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85209
dc.identifier2-s2.0-84922254287
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255828
dc.descriptionAb initio predictions for the stability of different graphene oxide (GO) structures have been shown to conflict with experimental observations. While ab initio studies predict that the most stable GOs are fully oxygen-covered (either with epoxide or hydroxyl), stable asproduced GOs are partially oxygen-covered and predominantly epoxide-covered structures. Although this discrepancy is being examined in terms of calculations of free energies of GOs and large diffusion energy-barriers for oxygen groups on graphene, there is still a lack of understanding on the energetic properties of GOs using classical molecular dynamics, which is able to investigate their structural distortion. Here, using the reactive empirical bond order (REBO) molecular dynamics potential, we compute the free energy and binding energy of GOs at different oxygen concentrations and epoxide to hydroxyl ratios, as well as the distortion energies of graphene lattice. Although epoxide causes more distortion on the carbon hexagonal planar structure, it provides more stability to the GO structure. The difference between free energy and binding energy of GOs is shown to be independent of oxygen coverage. These results allow gaining more insight on the issue of GO stability and show that REBO can capture most of experimental properties of GOs.
dc.description84
dc.description1
dc.description365
dc.description374
dc.descriptionWu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., De Heer, W.A., Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics (2008) Phys Rev Lett, 101, p. 026801. , http://dx.doi.org/10.1103/PhysRevLett.101.026801
dc.descriptionMattson, E.C., Pu, H., Cui, S., Schofield, M.A., Rhim, S., Lu, G., Evidence of nanocrystalline semiconducting graphene monoxide during thermal reduction of graphene oxide in vacuum (2011) ACS Nano, 5 (12), pp. 9710-9717. , http://dx.doi.org/10.1021/nn203160n
dc.descriptionJung, I., Dikin, D.A., Piner, R.D., Ruoff, R.S., Tunable electrical conductivity of individual graphene oxide sheets reduced at ''low'' temperatures (2008) Nano Lett, 8 (12), pp. 4283-4287. , http://dx.doi.org/10.1021/nl8019938
dc.descriptionYan, J.-A., Xian, L., Chou, M.Y., Structural and electronic properties of oxidized graphene (2009) Phys Rev Lett, 103, p. 086802. , http://dx.doi.org/10.1103/PhysRevLett.103.086802
dc.descriptionBalog, R., Jørgensen, B., Nilsson, L., Andersen, M., Rienks, E., Bianchi, M., Bandgap opening in graphene induced by patterned hydrogen adsorption (2010) Nat Mater, 9, pp. 315-319. , http://dx.doi.org/10.1038/NMAT2710
dc.descriptionSchniepp, H.C., Li, J.-L., McAllister, M.J., Sai, H., Herrera-Alonso, M., Adamson, D.H., Functionalized single graphene sheets derived from splitting graphite oxide (2006) J Phys Chem B, 110 (17), pp. 8535-8539. , http://dx.doi.org/10.1021/jp060936f
dc.descriptionPark, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat Nanotechnol, 4, pp. 217-224. , http://dx.doi.org/10.1038/nnano.2009.58
dc.descriptionGao, W., Alemany, L.B., Ci, L., Ajayan, P.M., New insights into the structure and reduction of graphite oxide (2009) Nat Chem, 1, pp. 403-408. , http://dx.doi.org/10.1038/NCHEM.281
dc.descriptionMathkar, A., Tozier, D., Cox, P., Ong, P., Galande, C., Balakrishnan, K., Controlled, stepwise reduction and band gap manipulation of graphene oxide (2012) J Phys Chem Lett, 3 (8), pp. 986-991. , http://dx.doi.org/10.1021/jz300096t
dc.descriptionMarcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z., Slesarev, A., Improved synthesis of graphene oxide (2010) ACS Nano, 4 (8), pp. 4806-4814. , http://dx.doi.org/10.1021/nn1006368
dc.descriptionFan, Z.-J., Kai, W., Yan, J., Wei, T., Zhi, L.-J., Feng, J., Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide (2011) ACS Nano, 5 (1), pp. 191-198. , http://dx.doi.org/10.1021/nn102339t
dc.descriptionAcik, M., Lee, G., Mattevi, C., Chhowalla, M., Cho, K., Chabal, Y.J., Unusual infrared-absorption mechanism in thermally reduced graphene oxide (2010) Nat Mater, 9, pp. 840-845. , http://dx.doi.org/10.1038/nmat2858
dc.descriptionTian, H., Xie, D., Yang, Y., Ren, T.L., Zhang, G., Wang, Y.F., A novel solid-state thermal rectifier based on reduced graphene oxide (2012) Sci Rep, 2, p. 523. , http://dx.doi.org/10.1038/srep00523
dc.descriptionXiao, N., Dong, X., Song, L., Liu, D., Tay, Y., Wu, S., Enhanced thermopower of graphene films with oxygen plasma treatment (2011) ACS Nano, 5 (4), pp. 2749-2755. , http://dx.doi.org/10.1021/nn2001849
dc.descriptionEda, G., Lin, Y.Y., Miller, S., Chen, C.W., Su, W.F., Chhowalla, M., Transparent and conducting electrodes for organic electronics from reduced graphene oxide (2008) Appl Phys Lett, 92, p. 233305. , http://dx.doi.org/10.1063/1.2937846
dc.descriptionEda, G., Fanchini, G., Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material (2008) Nat Nanotechnol, 3, pp. 270-274. , http://dx.doi.org/10.1038/nnano.2008.83
dc.descriptionWang, L., Lee, K., Sun, Y.-Y., Lucking, M., Chen, Z., Zhao, J.J., Graphene oxide as an ideal substrate for hydrogen storage (2009) ACS Nano, 3 (10), pp. 2995-3000. , http://dx.doi.org/10.1021/nn900667s
dc.descriptionDikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Preparation and characterization of graphene oxide paper (2007) Nat (London), 448, pp. 457-460. , http://dx.doi.org/10.1038/nature06016
dc.descriptionRamanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Functionalized graphene sheets for polymer nanocomposites (2008) Nat Nanotechnol, 3, pp. 327-331. , http://dx.doi.org/10.1038/nnano.2008.96
dc.descriptionVinod, S., Tiwary, C.S., Autreto, P.A.S., Taha-Tijerina, J., Ozden, S., Chipara, A.C., Low-density three-dimensional foam using self-reinforced hybrid two-dimensional atomic layers (2014) Nat Commun, 5, p. 4541. , http://dx.doi.org/10.1038/ncomms5541
dc.descriptionBoukhvalov, D.W., Katsnelson, M.I., Modeling of graphite oxide (2008) J Am Chem Soc, 130 (32), pp. 10697-10701. , http://dx.doi.org/10.1021/ja8021686
dc.descriptionLahaye, R.J.W.E., Jeong, H.K., Park, C.Y., Lee, Y.H., Density functional theory study of graphite oxide for different oxidation levels (2009) Phys Rev B, 79, p. 125435. , http://dx.doi.org/10.1103/PhysRevB.79.125435
dc.descriptionWang, L., Sun, Y.Y., Lee, K., West, D., Chen, Z.F., Zhao, J.J., Stability of graphene oxide phases from first-principles calculations (2010) Phys Rev B, 82, p. 161406R. , http://dx.doi.org/10.1103/PhysRevB.82.161406
dc.descriptionLu, N., Yin, D., Li, Z., Yang, J., Structure of graphene oxide: Thermodynamics versus kinetics (2011) J Phys Chem C, 115 (24), pp. 11991-11995. , http://dx.doi.org/10.1021/jp204476q
dc.descriptionLiu, L., Wang, L., Gao, J., Zhao, J., Gao, X., Chen, Z., Amorphous structural models for graphene oxides (2012) Carbon, 50, pp. 1690-1698. , http://dx.doi.org/10.1016/j.carbon.2011.12.014
dc.descriptionKim, S., Zhou, S., Hu, Y., Acik, M., Chabal, Y.J., Berger, C., Roomtemperature metastability of multilayer graphene oxide films (2012) Nat Mater, 11, pp. 544-549. , http://dx.doi.org/10.1038/nmat3316
dc.descriptionHuang, B., Xiang, H., Xu, Q., Wei, S.-H., Overcoming the phase inhomogeneity in chemically functionalized graphene: The case of graphene oxides (2013) Phys Rev Lett, 110, p. 085501. , http://dx.doi.org/10.1103/PhysRevLett.110.085501
dc.descriptionZhou, S., Bongiorno, A., Origin of the chemical and kinetic stability of graphene oxide (2013) Sci Rep, 3, p. 2484. , http://dx.doi.org/10.1038/srep02484
dc.descriptionAndremkhoyan, K., Contryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Atomic and electronic structure of graphene-oxide (2009) Nano Lett, 9 (3), pp. 1058-1063. , http://dx.doi.org/10.1021/nl8034256
dc.descriptionSaxena, S., Tyson, T.A., Shukla, S., Negusse, E., Chen, H., Bai, J., Investigation of structural and electronic properties of graphene oxide (2011) Appl Phys Lett, 99, p. 013104. , http://dx.doi.org/10.1063/1.3607305
dc.descriptionLee, G., Lee, B., Kim, J., Cho, K., Ozone adsorption on graphene: Ab initio study and experimental validation (2009) J Phys Chem C, 113 (32), pp. 14225-14229. , http://dx.doi.org/10.1021/jp904321n
dc.descriptionYamaguchi, H., Murakami, K., Eda, G., Fujita, T., Guan, P., Wang, W., Field emission from atomically thin edges of reduced graphene oxide (2011) ACS Nano, 5 (6), pp. 4945-4952. , http://dx.doi.org/10.1021/nn201043a
dc.descriptionXu, Z., Xue, K., Engineering graphene by oxidation: A firstprinciples study (2010) Nanotechnology, 21, p. 045704. , http://dx.doi.org/10.1088/0957-4484/21/4/045704
dc.descriptionLee, G., Cho, K., Electronic structures of zigzag graphene nanoribbons with edge hydrogenation and oxidation (2009) Phys Rev B, 79, p. 165440. , http://dx.doi.org/10.1103/PhysRevB.79.165440
dc.descriptionLee, G., Kim, K.S., Cho, K., Theoretical study of the electron transport in graphene with vacancy and residual oxygen defects after high-temperature reduction (2011) J Phys Chem C, 115 (19), pp. 9719-9725. , http://dx.doi.org/10.1021/jp111841w
dc.descriptionAcik, M., Lee, G., Mattevi, C., Pirkle, A., Wallace, R.M., Chhowalla, M., The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy (2011) J Phys Chem C, 115 (40), pp. 19761-19781. , http://dx.doi.org/10.1021/jp2052618
dc.descriptionGong, C., Acik, M., Abolfath, R.M., Chabal, Y., Cho, K., Graphitization of graphene oxide with ethanol during thermal reduction (2012) J Phys Chem C, 116 (18), pp. 9969-9979. , http://dx.doi.org/10.1021/jp212584t
dc.descriptionAbolfath, R., Cho, K., Computational studies for reduced graphene oxide in hydrogen-rich environment (2012) J Phys Chem A, 116 (7), pp. 1820-1827. , http://dx.doi.org/10.1021/jp2107439
dc.descriptionSrinivasan, S.G., Van Duin, A.C.T., Molecular-dynamics-based study of the collisions of hyperthermal atomic oxygen with graphene using the ReaxFF reactive force field (2011) J Phys Chem A, 115 (46), pp. 13269-13280. , http://dx.doi.org/10.1021/jp207179x
dc.descriptionBagri, A., Mattevi, C., Acik, M., Chabal, Y.J., Chhowalla, M., Shenoy, V.B., Structural evolution during the reduction of chemically derived graphene oxide (2010) Nat Chem, 2, pp. 581-587. , http://dx.doi.org/10.1038/nchem.686
dc.descriptionSuk, J.W., Piner, R.D., An, J., Ruoff, R.S., Mechanical properties of monolayer graphene oxide (2010) ACS Nano, 4 (11), pp. 6557-6564. , http://dx.doi.org/10.1021/nn101781v
dc.descriptionMedhekar, N.V., Ramasubramaniam, A., Ruoff, R.S., Shenoy, V.B., Hydrogen bond networks in graphene oxide composite paper: Structure and mechanical properties (2010) ACS Nano, 4 (4), pp. 2300-2306. , http://dx.doi.org/10.1021/nn901934u
dc.descriptionFonseca, A.F., Lee, G., Borders, T.L., Zhang, H., Kemper, T.W., Shan, T.R., Reparameterization of the REBO-CHO potential for graphene oxide molecular dynamics simulation (2011) Phys Rev B, 84, p. 075460. , http://dx.doi.org/10.1103/PhysRevB.84.075460
dc.descriptionZhang, H., Fonseca, A.F., Cho, K., Tailoring thermal transport property of graphene through oxygen functionalization (2014) J Phys Chem C, 118 (3), pp. 1436-1442. , http://dx.doi.org/10.1021/jp4096369
dc.descriptionMu, X., Wu, X., Zhang, T., Go, D.B., Luo, T., Thermal transport in graphene oxide-From ballistic extreme to amorphous limit (2014) Sci Rep, 4, p. 3909. , http://dx.doi.org/10.1038/srep03909
dc.descriptionLin, S., Buehler, M.J., Thermal transport in monolayer graphene oxide: Atomistic insights into phonon engineering through surface chemistry (2014) Carbon, 77, pp. 351-359. , http://dx.doi.org/10.1016/j.carbon.2014.05.038
dc.descriptionNi, B., Lee, K.-H., Sinnott, S.B., A reactive empirical bond order (REBO) potential for hydrocarbon-oxygen interactions (2004) J Phys: Condens Matter, 16, pp. 7261-7275. , http://dx.doi.org/10.1088/0953-8984/16/41/008
dc.descriptionChenoweth, K., Van Duin, A.C.T., Goddard, W.A., III, ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation (2008) J Phys Chem A, 112 (5), pp. 1040-1053. , http://dx.doi.org/10.1021/jp709896w
dc.descriptionHummers, W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J Am Chem Soc, 80 (6). , http://dx.doi.org/10.1021/ja01539a017.1339-1339
dc.descriptionDreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S., The chemistry of graphene oxide (2010) Chem Soc Rev, 39, pp. 228-240. , http://dx.doi.org/10.1039/B917103G
dc.descriptionSzabó, T., Berkesi, O., Forgó, P., Josepovits, K., Sanakis, Y., Petridis, D., Evolution of surface functional groups in a series of progressively oxidized graphite oxides (2006) Chem Mater, 18 (11), pp. 2740-2749. , http://dx.doi.org/10.1021/cm060258+
dc.descriptionLerf, A., He, H., Riedl, T., Forster, M., Klinowski, J., 13C and 1H MAS NMR studies of graphite oxide and its chemically modified derivatives (1997) Solid State Ionics, 101-103, pp. 857-862. , http://dx.doi.org/10.1016/S0167-2738(97)00319-6
dc.descriptionHe, H., Klinowski, J., Forster, M., Lerf, A., A new structural model for graphite oxide (1998) Chem Phys Lett, 287 (1-2), pp. 53-56. , http://dx.doi.org/10.1016/S0009-2614(98)00144-4
dc.descriptionLerf, A., He, H., Forster, M., Klinowski, J., Structure of graphite oxide revisited (1998) J Phys Chem B, 102 (23), pp. 4477-4482. , http://dx.doi.org/10.1021/jp9731821
dc.descriptionCassagneau, T., Guerin, F., Fendler, J.H., Preparation and characterization of ultrathin films layer-by-layer selfassembled from graphite oxide nanoplatelets and polymers (2000) Langmuir, 16 (18), pp. 7318-7324. , http://dx.doi.org/10.1021/la000442o
dc.descriptionHontoria-Lucas, C., López-Peinado, A.J., De López-González, J.D., Rojas-Cervantes, M.L., Martín-Aranda, R.M., Study of oxygencontaining groups in a series of graphite oxides: Physical and chemical characterization (1995) Carbon, 33 (11), pp. 1585-1592. , http://dx.doi.org/10.1016/0008-6223(95)00120-3
dc.descriptionSzabó, T., Tombácz, E., Illés, E., Dékány, I., Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides (2006) Carbon, 44 (3), pp. 537-545. , http://dx.doi.org/10.1016/j.carbon.2005.08.005
dc.descriptionShin, H.-J., Kim, K.K., Benayad, A., Yoon, S.-M., Park, H.K., Jung, I.-S., Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance (2009) Adv Funct Mater, 19 (12), pp. 1987-1992
dc.descriptionZhu, J., Andres, C.M., Xu, J., Ramamoorthy, A., Tsotsis, T., Kotov, N.A., Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies (2012) ACS Nano, 6 (9), pp. 8357-8365. , http://dx.doi.org/10.1021/nn3031244
dc.descriptionReuter, K., Scheffler, M., Composition, structure, and stability of RuO2(110) as a function of oxygen pressure (2002) Phys Rev B, 65, p. 035406. , http://dx.doi.org/10.1103/PhysRevB.65.035406
dc.descriptionCODATA recommended key values for thermodynamics, 1977. Report of the CODATA Task Group on key values of thermodynamics, 1977 (1978) J Chem Thermodyn, 10 (10), pp. 903-906. , http://dx.doi.org/10.1016/0021-9614(78)90050-2
dc.descriptionYan, J.-A., Chou, M.Y., Oxidation functional groups on graphene: Structural and electronic properties (2010) Phys Rev B, 82 (12), p. 125403. , http://dx.doi.org/10.1103/PhysRevB.82.125403
dc.descriptionJung, I., Field, D.A., Clark, N.J., Zhu, Y., Yang, D., Piner, R.D., Reduction kinetics of graphene oxide determined by electrical transport measurements and temperature programmed desorption (2009) J Phys Chem C, 113 (43), pp. 18480-18486. , http://dx.doi.org/10.1021/jp904396j
dc.descriptionLu, N., Huang, Y., Li, H., Li, Z., Yang, J., First principles nuclear magnetic resonance signatures of graphene oxide (2010) J Chem Phys, 133, p. 034502. , http://dx.doi.org/10.1063/1.3455715
dc.languageen
dc.publisherElsevier Ltd
dc.relationCarbon
dc.rightsfechado
dc.sourceScopus
dc.titleFormation Energy Of Graphene Oxide Structures: A Molecular Dynamics Study On Distortion And Thermal Effects
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución