Artículos de revistas
A Novel Nanocomposite Based On Tio2/cu2o/reduced Graphene Oxide With Enhanced Solar-light-driven Photocatalytic Activity
Registro en:
Applied Surface Science. Elsevier, v. 324, n. , p. 419 - 431, 2015.
1694332
10.1016/j.apsusc.2014.10.105
2-s2.0-84920658837
Autor
Almeida B.M.
Melo Jr M.A.
Bettini J.
Benedetti J.E.
Nogueira A.F.
Institución
Resumen
A novel nanocomposite composed of TiO2 and Cu2O nanoparticles combined with reduced graphene oxide (RGO) was synthesized and characterized. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG) and elemental analysis were employed to investigate the structure, morphology, optical properties and composition of the nanocomposite and the intermediate materials. The photocatalytic activity of TiO2/Cu2O/RGO and the individual materials were studied through the photodegradation of methylene blue under solar radiation. A considerable increase in the photodegradation activity using the nanocomposite was obtained after 5 h (∼95% of MB degradation). Photoelectrochemical studies were carried out and confirmed the superiority of the novel nanocomposite in the photocurrent generation. The highest activity resulted from the synergy of this carbonaceous structure with TiO2 and Cu2O, which could absorb a wider portion of the solar spectrum, adsorb higher quantities of methylene blue on the surface and improve the effective separation of the generated electron-hole pairs. 324
419 431 Forgacs, E., Cserháti, T., Oros, G., Removal of synthetic dyes from wastewaters: A review (2004) Environ. Int., 30, pp. 953-971 Yang, S.-T., Chen, S., Chang, Y., Cao, A., Liu, Y., Wang, H., Removal of methylene blue from aqueous solution by graphene oxide (2011) J. Colloid Interface Sci., 359, pp. 24-29 Whang, T.-J., Hsieh, M.-T., Chen, H.-H., Visible-light photocatalytic degradation of methylene blue with laser-induced Ag/ZnO nanoparticles (2012) Appl. Surf. Sci., 258, pp. 2796-2801 Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., Herrmann, J.-M., Photocatalytic degradation pathway of methylene blue in water (2001) Appl. Catal. B: Environ., 31, pp. 145-157 Yang, G., Wang, T., Yang, B., Yan, Z., Ding, S., Xiao, T., Enhanced visible-light activity of F-N co-doped TiO2 nanocrystals via nonmetal impurity, Ti3+ ions and oxygen vacancies (2013) Appl. Surf. Sci., 287, pp. 135-142 Lui, G., Liao, J.-Y., Duan, A., Zhang, Z., Fowler, M., Yu, A., Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance (2013) J. Mater. Chem. A, 1, pp. 12255-12262 Sookhakian, M., Amin, Y.M., Basirun, W.J., Hierarchically ordered macro-mesoporous ZnS microsphere with reduced graphene oxide supporter for a highly efficient photodegradation of methylene blue (2013) Appl. Surf. Sci., 283, pp. 668-677 Acosta-Silva, Y.J., Nava, R., Hernández-Morales, V., Macías-Sánchez, S.A., Gómez-Herrera, M.L., Pawelec, B., Methylene blue photodegradation over titania-decorated SBA-15 (2011) Appl. Catal. B: Environ., 110, pp. 108-117 McLaren, A., Valdes-Solis, T., Li, G., Tsang, S.C., Shape and size effects of ZnO nanocrystals on photocatalytic activity (2009) J. Am. Chem. Soc., 131, pp. 12540-12541 Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Dionysiou, D.D., A review on the visible light active titanium dioxide photocatalysts for environmental applications (2012) Appl. Catal. B: Environ., 125, pp. 331-349 Ismail, A.A., Bahnemann, D.W., Mesostructured Pt/TiO2 nanocomposites as highly active photocatalysts for the photooxidation of dichloroacetic acid (2011) J. Phys. Chem. C, 115, pp. 5784-5791 Wang, Y., Feng, C., Jin, Z., Zhang, J., Yang, J., Zhang, S., A novel N-doped TiO2 with high visible light photocatalytic activity (2006) J. Mol. Catal. A: Chem., 260, pp. 1-3 Gangotri, K.M., Meena, R.C., Use of reductant and photosensitizer in photogalvanic cells for solar energy conversion and storage: Oxalic acid-methylene blue system (2001) J. Photochem. Photobiol. A: Chem., 141, pp. 175-177 Chatterjee, D., Effect of excited state redox properties of dye sensitizers on hydrogen production through photo-splitting of water over TiO2 photocatalyst (2010) Catal. Commun., 11, pp. 336-339 Ryu, S.Y., Balcerski, W., Lee, T.K., Hoffmann, M.R., Photocatalytic production of hydrogen from water with visible light using hybrid catalysts of CdS attached to microporous and mesoporous silicas (2007) J. Phys. Chem. C, 111, pp. 18195-18203 Hernández-Alonso, M.D., Fresno, F., Suárez, S., Coronado, J.M., Development of alternative photocatalysts to TiO2: Challenges and opportunities (2009) Energy Environ. Sci., 2, pp. 1231-1257 Yang, F., Han, G., Fu, D., Chang, Y., Wang, H., Improved photodegradation activity of TiO2 via decoration with SnS2 nanoparticles (2013) Mater. Chem. Phys., 140, pp. 398-404 Medina-Gonzalez, Y., Xu, W.Z., Chen, B., Farhanghi, N., Charpentier, P.A., CdS and CdTeS quantum dot decorated TiO2 nanowires. Synthesis and photoefficiency (2011) Nanotechnology, 22, pp. 1-8 Nah, Y.-C., Paramasivam, I., Schmuki, P., Doped TiO2 and TiO2 nanotubes: Synthesis and applications (2010) ChemPhysChem, 11, pp. 2698-2713 Zhang, Q., Su, J., Zhang, X., Li, J., Zhang, A., Gao, Y., Chemical vapor deposition of a PbSe/CdS/nitrogen-doped TiO2 nanorod array photoelectrode and its band-edge level structure (2012) New J. Chem., 36, pp. 2302-2307 Zainun, A.R., Tomoya, S., Noor, U.M., Rusop, M., Masaya, I., New approach for generating Cu2O/TiO2 composite films for solar cell applications (2012) Mater. Lett., 66, pp. 254-256 Miranda, S.M., Romanos, G.E., Likodimos, V., Marques, R.R.N., Favvas, E.P., Katsaros, F.K., Stefanopoulos, K.L., Silva, A.M.T., Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO2/CNT composites (2014) Appl. Catal. B: Environ., 147, pp. 65-81 Leary, R., Westwood, A., Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis (2011) Carbon, 49, pp. 741-772 Maiti, U.N., Lee, W.J., Lee, J.M., Oh, Y., Kim, J.Y., Kim, J.E., Shim, J., Kim, S.O., 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices (2014) Adv. Mater., 26, pp. 40-67 Chua, C.K., Pumera, M., Chemical reduction of graphene oxide: A synthetic chemistry viewpoint (2014) Chem. Soc. Rev., 43, pp. 291-312 Brownson, D.A.C., Kampouris, D.K., Banks, C.E., Graphene electrochemistry: Fundamental concepts through to prominent applications (2012) Chem. Soc. Rev., 41, pp. 6944-6976 Mahmood, N., Zhang, C., Yin, H., Hou, Y., Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells (2014) J. Mater. Chem. A, 2, pp. 15-32 Zhang, N., Yang, M.-Q., Tang, Z.-R., Xu, Y.-J., Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator (2014) ACS Nano, 8, pp. 623-633 Zhang, N., Zhang, Y., Xu, Y.-J., Recent progress on graphene-based photocatalysts: Current status and future perspectives (2012) Nanoscale, 4, pp. 5792-5813 Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J., P25-graphene composite as a high performance photocatalyst (2010) ACS Nano, 4, pp. 380-386 Cong, Y., Long, M., Cui, Z., Li, X., Dong, Z., Yuan, G., Zhang, J., Anchoring a uniform TiO2 layer on graphene oxide sheets as an efficient visible light photocatalyst (2013) Appl. Surf. Sci., 282, pp. 400-407 Gao, P., Sun, D.D., Hierarchical sulfonated graphene oxide-TiO2 composites for highly efficient hydrogen production with a wide pH range (2014) Appl. Catal. B: Environ., 147, pp. 888-896 Zhang, N., Zhang, Y., Pan, X., Yang, M.-Q., Xu, Y.-J., Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation (2012) J. Phys. Chem. C, 116, pp. 18023-18031 Yang, M.-Q., Xu, Y.-J., Selective photoredox using graphene-based composite photocatalysts (2013) Phys. Chem. Chem. Phys., 15, pp. 19102-19118 Williams, G., Seger, B., Kamat, P.V., TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide (2008) ACS Nano, 2, pp. 1487-1491 Sun, H., Liu, S., Liu, S., Wang, S., A comparative study of reduced graphene oxide modified TiO2, ZnO and Ta2O5 in visible light photocatalytic/photochemical oxidation of methylene blue (2014) Appl. Catal. B: Environ., 146, pp. 162-168 Zeng, X., Bao, J., Han, M., Tu, W., Dai, Z., Quantum dots sensitized titanium dioxide decorated reduced graphene oxide for visible light excited photoelectrochemical biosensing at a low potential (2014) Biosens. Bioelectron., 54, pp. 331-338 Hummers, Jr.W.S., Offeman, R.E., Preparation of graphitic oxide (1958) J. Am. Chem. Soc., 80, p. 1339 Park, S., Ruoff, R.S., Chemical methods for the production of graphenes (2009) Nat. Nanotechnol., 4, pp. 217-224 Li, B., Liu, T., Hu, L., Wang, Y., A facile one-pot synthesis of Cu2O/RGO nanocomposite for removal of organic pollutant (2013) J. Phys. Chem. Solids, 74, pp. 635-640 Xu, C., Wang, X., Yang, L., Wu, Y., Fabrication of a graphene-cuprous oxide composite (2009) J. Solid State Chem., 182, pp. 2486-2490 Orel, Z.C., Anzlovar, A., Drazic, G., Zigon, M., Cuprous oxide nanowires prepared by an additive-free polyol process (2007) Cryst. Growth Des., 7, pp. 453-458 Kaniyoor, A., Ramaprabhu, S., Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells (2011) J. Appl. Phys., 109, p. 124308 Wang, H., Hu, Y.H., Effect of oxygen content on structures of graphite oxides (2011) Ind. Eng. Chem. Res., 50, pp. 6132-6137 Shen, J., Yan, B., Shi, M., Ma, H., Li, N., Ye, M., One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets (2011) J. Mater. Chem., 21, pp. 3415-3421 Zhang, Y., Tang, Z.-R., Fu, X., Xu, Y.-J., Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: What advantage does graphene vave over its forebear carbon nanotube? (2011) ACS Nano, 5, pp. 7426-7435 Shen, X., Tian, B., Zhang, J., Tailored preparation of titania with controllable phases of anatase and brookite by an alkalescent hydrothermal route (2013) Catal. Today, 201, pp. 151-158 Yu, H., Tian, B., Zhang, J., Layered TiO2 composed of anatase nanosheets with exposed {001} facets: Facile synthesis and enhanced photocatalytic activity (2011) Chem. Eur. J., 17, pp. 5499-5502 Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., Ruoff, R.S., Hydrazine-reduction of graphite- and graphene oxide (2011) Carbon, 49, pp. 3019-3023 Zhang, Y., Tang, Z.-R., Fu, X., Xu, Y.-J., TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials? (2010) ACS Nano, 4, pp. 7303-7314 He, G.Y., Huang, J., Liu, W.F., Wang, X., Chen, H.Q., Sun, X.Q., ZnO-Bi2O3/graphene oxide photocatalyst with high photocatalytic performance under visible light (2012) Mater. Technol., 27, pp. 278-283 Ismail, A.A., Geioushy, R.A., Bouzid, H., Al-Sayari, S.A., Al-Hajry, A., Bahnemann, D.W., TiO2 decoration of graphene layers for highly efficient photocatalyst: Impact of calcination at different gas atmosphere on photocatalytic efficiency (2013) Appl. Catal. B: Environ., 129, pp. 62-70 Barbé, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Grätzel, M., Nanocrystalline titanium oxide electrodes for photovoltaic applications (1997) J. Am. Ceram. Soc., 80, pp. 3157-3171 Eliyas, A.E., Ljutzkanov, L., Stambolova, I.D., Blaskov, V.N., Vassilev, S.V., Razkazova-Velkova, E.N., Mehandjiev, D.R., Visible light photocatalytic activity of TiO2 deposited on activated carbon (2013) Cent. Eur. J. Chem., 11, pp. 464-470 Liang, D., Cui, C., Hu, H., Wang, Y., Xu, S., Ying, B., Li, P., Shen, H., One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity (2014) J. Alloys Compd., 582, pp. 236-240 Guinel, M.J.-F., Brodusch, N., Verde-Gómez, Y., Escobar-Morales, B., Gauvin, R., Multi-walled carbon nanotubes decorated by platinum catalyst nanoparticles - Examination and microanalysis using scanning and transmission electron microscopies (2013) J. Microsc., 252, pp. 49-57 Kim, H., Moon, G., Monllor-Satoca, D., Park, Y., Choi, W., Solar photoconversion using graphene/TiO2 composites: Nanographene shell on TiO2 core versus TiO2 nanoparticles on graphene sheet (2012) J. Phys. Chem. C, 116, pp. 1535-1543 Zhang, Y., Zhang, N., Tang, Z.-R., Xu, Y.-J., Graphene transforms wide band gap ZnS to a visible light photocatalyst. The new role of graphene as a macromolecular photosensitizer (2012) ACS Nano, 6, pp. 9777-9789 Liu, S., Yang, M.-Q., Xu, Y.-J., Surface charge promotes the synthesis of large, flat structured graphene-(CdS nanowire)-TiO2 nanocomposites as versatile visible light photocatalysts (2014) J. Mater. Chem. A, 2, pp. 430-440 Pastrana-Martínez, L.M., Morales-Torres, S., Likodimos, V., Figueiredo, J.L., Faria, J.L., Falaras, P., Silva, A.M.T., Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye (2012) Appl. Catal. B: Environ., 123-124, pp. 241-256 Dong, X., Wang, K., Zhao, C., Qian, X., Chen, S., Li, Z., Liu, H., Dou, S., Direct synthesis of RGO/Cu2O composite films on Cu foil for supercapacitors (2014) J. Alloys Compd., 586, pp. 745-753 Zong, M., Huang, Y., Wu, H., Zhao, Y., Liu, P., Wang, L., Facile preparation of RGO/Cu2O/Cu composite and its excellent microwave absorption properties (2013) Mater. Lett., 109, pp. 112-115 Uddin, M.T., Nicolas, Y., Olivier, C., Toupance, T., Müller, M.M., Kleebe, H.-J., Rachut, K., Jaegermann, W., Preparation of RuO2/TiO2 mesoporous heterostructures and rationalization of their enhanced photocatalytic properties by band alignment investigations (2013) J. Phys. Chem. C, 117, pp. 22098-22110 Xu, Y., Liang, D., Liu, M., Liu, D., Preparation and characterization of Cu2O-TiO2: Efficient photocatalytic degradation of methylene blue (2008) Mater. Res. Bull., 43, pp. 3474-3482 Bessergenev, V., High-temperature anomalies of dielectric constant in TiO2 thin films (2009) Mater. Res. Bull., 44, pp. 1722-1728 Ching, W.Y., Xu, Y.-N., Wong, K.W., Ground-state and optical properties of Cu2O and CuO crystals (1989) Phys. Rev. B, 40, pp. 7684-7695 Bessekhouad, Y., Robert, D., Weber, J.-V., Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions (2005) Catal. Today, 101, pp. 315-321 Hou, Y., Li, X., Zou, X., Quan, X., Chen, G., Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation (2009) Environ. Sci. Technol., 43, pp. 858-863 Meng, F., Li, J., Cushing, S.K., Bright, J., Zhi, M., Rowley, J.D., Hong, Z., Wu, N., Photocatalytic water oxidation by hematite/reduced graphene oxide composites (2013) ACS Catal., 3, pp. 746-751 Wang, A., Li, X., Zhao, Y., Wu, W., Chen, J., Meng, H., Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances (2014) Powder Technol., 261, pp. 42-48 Rakhashani, A.E., Preparation, characteristcs and photovoltaic properties of cuprous oxide - A review (1986) Solid State Electron., 29, pp. 7-17 Xiong, L., Huang, S., Yang, X., Qiu, M., Chen, Z., Yu, Y., P-Type and n-type Cu2O semiconductor thin films: Controllable preparation by simple solvothermal method and photoelectrochemical properties (2011) Electrochim. Acta, 56, pp. 2735-2739 Siripala, W., Jayakody, J.R.P., (1986) Sol. Energy Mater., 14, pp. 23-27 Siripala, W., Perera, L.D.R.D., De Silva, K.T.L., Jayanetti, J.K.D.S., Dharmadasa, I.M., (1996) Sol. Energy Mater. Sol. Cells, 44, pp. 251-260 Garuthara, R., Siripala, W., Photoluminescence characterization of polycrystalline n-type Cu2O films (2006) J. Lumin., 121, pp. 173-178 Scanlon, D.O., Watson, G.W., Undoped n-type Cu2O: Fact or fiction? (2010) J. Phys. Chem. Lett., 1, pp. 2582-2585 Liu, X., Pan, L., Lv, T., Sun, Z., CdS sensitized TiO2 film for photocatalytic reduction of Cr(VI) by microwave-assisted chemical bath deposition method (2014) J. Alloys Compd., 583, pp. 390-395 Siripala, W., Ivanovskaya, A., Jaramillo, T.F., Baeck, S.-H., McFarland, E.W., A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis (2003) Sol. Energy Mater. Sol. Cells, 77, pp. 229-237 Zhang, N., Zhang, Y., Pan, X., Fu, X., Liu, S., Xu, Y.-J., Assembly of CdS nanoparticles on the two-dimensional graphene scaffold as visible-light-driven photocatalyst for selective organic transformation under ambient conditions (2011) J. Phys. Chem. C, 115, pp. 23501-23511 Tang, Y.-B., Lee, C.-S., Xu, J., Liu, Z.-T., Chen, Z.-H., He, Z., Cao, Y.-L., Lee, S.-T., Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application (2010) ACS Nano, 4, pp. 3482-3488 Zhu, Y., Meng, X., Cui, H., Jia, S., Dong, J., Zheng, J., Zhao, J., Zhu, Graphene frameworks promoted electron transport in quantum dot-sensitized solar cells (2014) ACS Appl. Mater. Interfaces, 6, pp. 13833-13840