Artículos de revistas
Phylogeny, Ecology, And Heart Position In Snakes
Registro en:
Physiological And Biochemical Zoology. , v. 83, n. 1, p. 43 - 54, 2010.
15222152
10.1086/648509
2-s2.0-72449153475
Autor
Gartner G.E.A.
Hicks J.W.
Manzani P.R.
Andrade D.V.
Abe A.S.
Wang T.
Secor S.M.
Garland Jr. T.
Institución
Resumen
The cardiovascular system of all animals is affected by gravitational pressure gradients, the intensity of which varies according to organismic features, behavior, and habitat occupied. A previous nonphylogenetic analysis of heart position in snakes-which often assume vertical postures-found the heart located 15%-25% of total body length from the head in terrestrial and arboreal species but 25%-45% in aquatic species. It was hypothesized that a more anterior heart in arboreal species served to reduce the hydrostatic blood pressure when these animals adopt vertical postures during climbing, whereas an anterior heart position would not be needed in aquatic habitats, where the effects of gravity are less pronounced. We analyzed a new data set of 155 species from five major families of Alethinophidia (one of the two major branches of snakes, the other being blind snakes, Scolecophidia) using both conventional and phylogenetically based statistical methods. General linear models regressing log10 snout-heart position on log10 snout-vent length (SVL), as well as dummy variables coding for habitat and/or clade, were compared using likelihood ratio tests and the Akaike Information Criterion. Heart distance to the tip of the snout scaled isometrically with SVL. In all instances, phylogenetic models that incorporated transformation of the branch lengths under an Ornstein-Uhlenbeck model of evolution (to mimic stabilizing selection) better fit the data as compared with their nonphylogenetic counterparts. The bestfit model predicting snake heart position included aspects of both habitat and clade and indicated that arboreal snakes in our study tend to have hearts placed more posteriorly, opposite the trend identified in previous studies. Phylogenetic signal in relative heart position was apparent both within and among clades. Our results suggest that overcoming gravitational pressure gradients in snakes most likely involves the combined action of several cardiovascular and behavioral adaptations in addition to alterations in relative heart location. © 2010 by The University of Chicago. 83 1 43 54 Badeer, H.S., Anatomical position of heart in snakes with vertical orientation: A new hypothesis (1998) Comp Biochem Physiol A, 119, pp. 403-405 Blomberg, S.P., Garland Jr., T., Tempo and mode in evolution: Phylogenetic inertia, adaptation and comparative methods (2002) J Evol Biol, 15, pp. 899-910 Blomberg, S.P., Garland Jr., T., Ives, A.R., Testing for phylogenetic signal in comparative data: Behavioral traits are more labile (2003) Evolution, 57, pp. 717-745 Buchwalter, D.B., Cain, D.J., Martin, C.A., Xie, L., Luoma, S.N., Garland Jr., T., Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility (2008) Proc Natl Acad Sci USA, 105, pp. 8321-8326 Buckner, P., Quail, A., Cottee, D., White, S., Venous hydrostatic indifference point as a marker of postnatal adaptation to orthostasis in swine (1999) J Appl Physiol, 87, pp. 882-888 Burnham, K.P., Anderson, D.R., (2002) Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach, , 2nd ed. Springer, New York Clark, J.H., Hooker, D.R., Weed, L.H., The hydrostatic factor in venous pressure measurements (1934) Am J Physiol, 109, pp. 166-177 Clobert, J., Garland Jr., T., Barbault, R., The evolution of demographic tactics in lizards: A test of some hypotheses concerning life history evolution (1998) J Evol Biol, 11, pp. 329-364 Cohn, M.J., Tickle, C., Developmental basis of limblessness and axial patterning in snakes (1999) Nature, 399, pp. 474-479 De Queiroz, A., Rodríguez-Robles, J.A., Historical contingency and animal diets: The origins of egg eating in snakes (2006) Am Nat, 167, pp. 684-694 Díaz-Uriarte, R., Garland Jr., T., Effects of branch length errors on the performance of phylogenetically independent contrasts (1998) Syst Biol, 47, pp. 654-672 Duncan, R.P., Forsyth, D.M., Hone, J., Testing the metabolic theory of ecology: Allometric scaling exponents in mammals (2007) Ecology, 88, pp. 324-333 Felsenstein, J., Phylogenies and quantitative characters (1988) Annu Rev Ecol Syst, 19, pp. 445-471 Freckleton, R.P., Harvey, P.H., Pagel, M., Phylogenetic analysis and comparative data: A test and review of evidence (2002) Am Nat, 160, pp. 712-726 Garland Jr., T., Adolph, S.C., Physiological differentiation of vertebrate populations (1991) Annu Rev Ecol Syst, 22, pp. 193-228 Why not to do two-species comparative studies: Limitations on inferring adaptation (1994) Physiol Zool, 67, pp. 797-828 Garland Jr., T., Bennett, A.F., Rezende, E.L., Phylogenetic approaches in comparative physiology (2005) J Exp Biol, 208, pp. 3015-3035 Garland Jr., T., Carter, P.A., Evolutionary physiology (1994) Annu Rev Physiol, 56, pp. 579-621 Garland Jr., T., Dickerman, A.W., Janis, C.M., Jones, J.A., Phylogenetic analysis of covariance by computer simulation (1993) Syst Biol, 42, pp. 265-292 Garland Jr., T., Harvey, P.H., Ives, A.R., Procedures for the analysis of comparative data using phylogenetically independent contrasts (1992) Syst Biol, 41, pp. 18-32 Garland Jr., T., Ives, A.R., Using the past to predict the present: Confidence intervals for regression equations in phylogenetic comparative methods (2000) Am Nat, 155, pp. 346-364 Garland Jr., T., Midford, P.E., Ives, A.R., An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values (1999) Am Zool, 39, pp. 374-388 Gauer, O.H., Thron, H.L., (1965) Postural Changes in the Circulation, 3, pp. 2409-2439. , W.F. Hamilton and P. Dow, eds. Handbook of Physiology. Sec. 2. Circulation. Vol. American Physiological Society, Washington, DC Goldsmith, S.K., Aspects of the natural history of the rough green snake Opheodrys aestivius, 29, pp. 445-452. , (Colubridae). Southwest Nat Gould, S.J., Lewontin, R., The spandrels of SanMarcos and the Panglossian paradigm: A critique of the adaptationist programme (1979) Proc R Soc B, 205, pp. 581-598 Grafen, A., The phylogenetic regression (1989) Philos Trans R Soc B, 326, pp. 119-157 Greene, H.W., Diet and arboreality in the emerald monitor (1986) Varanus Prasinus, 31, pp. 1-12. , with comments on the study of adaptation. Fieldiana (1997) Snakes: The Evolution of Mystery in Nature, , University of California Press, Berkeley Greene, H.W., McDiarmid, R.W., (2005) Ecology and Evolution in the Tropics: A Herpetological Perspective, pp. 190-208. , Wallace and Savage: heroes, theories and venomous snake mimicry M.A. Donnelly, B.I. Crother, C. Guyer, M.H. Wake, and M.E. White, eds. University of Chicago Press, Chicago Guyer, C., Donnelly, M.A., Length-mass relationships among an assemblage of tropical snakes in Costa Rica (1990) J Trop Ecol, 6, pp. 65-76 Halsey, L.G., Butler, P.J., Blackburn, T.M., A phylogenetic analysis of the allometry of diving (2006) Am Nat, 167, pp. 276-287 Hampton, P.M., Morphological and anatomical correlates to prey shape in snakes (2009) Integr Comp Biol 49, (SUPPL. 1). , (online ): e70 Hargens, A., Developmental adaptations to gravity in animals (1991) NASA Technical Memorandum, , 102228, unclassified Hargens, A.R., Millard, R.W., Pettersson, K.S., Johansen, K., Gravitational haemodynamics and oedema prevention in the giraffe (1987) Nature, 329, pp. 59-60 Harvey, P.H., Pagel, M.D., (1991) The Comparative Method in Evolutionary Biology, , Oxford University Press, Oxford Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Álvarez Pérez, H.J., Garland Jr., T., Why tropical forest lizards are vulnerable to climate warming (2009) Proc R Soc B, 276, pp. 1939-1948 Ives, A.R., Midford, P.E., Garland Jr., T., Within-species variation and measurement error in phylogenetic comparative methods (2007) Syst Biol, 56, pp. 252-270 Jarvis, S., Sheriff, D., Pawelczyk, J., The volume indifferent point: An approach for explaining orthostatic intolerance (2007) FASEB J, 21, p. 750. , 10 (Abstr.) Jayne, B.C., Comparative morphology of the semispinalisspinalis muscle of snakes and correlations with locomotion and constriction (1982) J Morphol, 172, pp. 83-96 Jeffery, N., Ryan, T.M., Spoor, F., The primate subarcuate fossa and its relationship to the semicircular canals. II. Adult interspecific variation (2008) J Hum Evol, 55, pp. 326-339 Lavin, S.R., Karasov, W.H., Ives, A.R., Middleton, K.M., Garland Jr., T., Morphometrics of the avian small intestine compared with that of non-flying mammals: A phylogenetic approach (2008) Physiol Biochem Zool, 81, pp. 526-550 Lillywhite, H.B., Circulatory adaptations of snakes to gravity (1987) Am Zool, 27, pp. 81-95 Snakes, blood circulation and gravity (1988) Sci Am, 256, pp. 92-98 Subcutaneous compliance and gravitational adaptations in snakes (1993) J Exp Zool, 267, pp. 557-562 Gravity, blood circulation, and the adaptation of form and function in lower vertebrates (1996) J Exp Zool, 275, pp. 217-225 Lillywhite, H.B., Ballard, R.E., Hargens, A.R., Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity (1996) J Comp Physiol B, 166, pp. 241-253 Tolerance of snakes to hypergravity (1996) Physiol Zool, 69, pp. 239-303 Lillywhite, H.B., Henderson, R.W., (1993) Snakes, Ecology and Behavior, pp. 1-48. , Behavioral and functional ecology of arboreal snakes. Pp. R.A. Seigel and J.T. Collins, eds. McGraw- Hill, New York Manzani, P.R., (1995) Açao da Gravidade e Sistema Cardiovascular em Serpentes: Habito ou Filogenia?, , Universidade Estadual Paulista, Rio Claro Martins, E.P., Hansen, T.F., Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data (1997) Am Nat, 149, pp. 646-667. , (erratum, 153:448) Martins, M., Marques, O.A.V., Sazima, I., How to be arboreal and diurnal and still stay alive: Microhabitat use, time of activity, and defense in Neotropical forest snakes (2008) S Am J Herpetol, 3, pp. 58-67 Martins, M., Oliveira, M.E., Natural history of snakes in forests of the Manaus region, central Amazonia, Brazil (1998) Herpetol Nat Hist, 6, pp. 78-150 Nilsson, O., Booj, S., Dahlstrom, A., Hargens, A.R., Millard, R.W., Pettersson, K.S., Sympathetic innervation of the cardiovascular system in the giraffe (1988) Blood Vessels, 25, pp. 299-307 (2001) Adaptationism and Optimality, , Orzack S. and E. Sober, eds. Cambridge University Press, Cambridge Pagel, M.D., A method for the analysis of comparative data (1992) J Theor Biol, 156, pp. 431-442 Rayner, J.M.V., Linear relations in biomechanics: The statistics of scaling functions (1985) J Zool, 206, pp. 415-439. , (Lond) Rose, M., Lauder, G.V., (1996) Adaptation, , Academic Press, San Diego, CA Seymour, R.S., Scaling of cardiovascular physiology in snakes (1987) Am Zool, 27, pp. 97-109 Seymour, R.S., Lillywhite, H.B., Blood pressure in snakes from different habitats (1976) Nature, 264, pp. 664-667 Swanson, D.L., Garland Jr., T., The evolution of high summit metabolism and cold tolerance in birds and its impact on present-day distributions (2009) Evolution, 63, pp. 184-194 Uetz, P., Goll, J., Hallermann, J., Die TIGR-Reptiliendatanbank (2007) Elaphe, 15, pp. 22-25 Wagner, E., Fortgesetzte Untersuchungen über den Einfluss der Schwere auf den Kreislauf (1886) Arch Ges Physiol, 39, p. 371 Warne, R.W., Charnov, E.L., Reproductive allometry and the size-number trade-off for lizards (2008) Am Nat, 172, pp. E80-E98 Warton, D.I., Wright, I.J., Falster, D.S., Westoby, M., Bivariate line-fitting methods for allometry (2006) Biol Rev, 81, pp. 259-291 Williamson, J.R., Vogler, N.J., Kilo, C., Regional variations in the width of the basement membrane of muscle capillaries in man and giraffe (1971) Am J Pathol, 63, pp. 359-370 Wright, A.H., Wright, A.A., (1957) Handbook of Snakes of the United States and Canada, , Cornell University Press, Ithaca, NY