dc.creatorDe Jesus M.B.
dc.creatorZuhorn I.S.
dc.date2015
dc.date2015-06-25T12:50:55Z
dc.date2015-11-26T14:58:11Z
dc.date2015-06-25T12:50:55Z
dc.date2015-11-26T14:58:11Z
dc.date.accessioned2018-03-28T22:09:55Z
dc.date.available2018-03-28T22:09:55Z
dc.identifier
dc.identifierJournal Of Controlled Release. Elsevier, v. 201, n. , p. 1 - 13, 2015.
dc.identifier1683659
dc.identifier10.1016/j.jconrel.2015.01.010
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84921059282&partnerID=40&md5=89cd25be8c154feba9f9b3af672313cf
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/85188
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85188
dc.identifier2-s2.0-84921059282
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255808
dc.descriptionSolid lipid nanoparticles (SLNs) have been proposed in the 1990s as appropriate drug delivery systems, and ever since they have been applied in a wide variety of cosmetic and pharmaceutical applications. In addition, SLNs are considered suitable alternatives as carriers in gene delivery. Although important advances have been made in this particular field, fundamental knowledge of the underlying mechanisms of SLN-mediated gene delivery is conspicuously lacking, an imperative requirement in efforts aimed at further improving their efficiency. Here, we address recent advances in the use of SLNs as platform for delivery of nucleic acids as therapeutic agents. In addition, we will discuss available technology for conveniently producing SLNs. In particular, we will focus on underlying molecular mechanisms by which SLNs and nucleic acids assemble into complexes and how the nucleic acid cargo may be released intracellularly. In discussing underlying mechanisms, we will, when appropriate, refer to analogous studies carried out with systems based on cationic lipids and polymers, that have proven useful in the assessment of structure-function relationships. Finally, we will give suggestions for improving SLN-based gene delivery systems, by pointing to alternative methods for SLNplex assembly, focusing on the realization of a sustained nucleic acid release.
dc.description201
dc.description
dc.description1
dc.description13
dc.descriptionSheridan, C., Gene therapy finds its niche (2011) Nat. Biotechnol., 29, pp. 121-128
dc.descriptionWiethoff, C.M., Middaugh, C.R., Barriers to nonviral gene delivery (2003) J. Pharm. Sci., 92, pp. 203-217
dc.descriptionZuhorn, I.S., Engberts, J.B.F.N., Hoekstra, D., Gene delivery by cationic lipid vectors: Overcoming cellular barriers (2007) Eur. Biophys. J., 36, pp. 349-362
dc.descriptionPérez-Martínez, F.C., Guerra, J., Posadas, I., Ceña, V., Barriers to non-viral vector-mediated gene delivery in the nervous system (2011) Pharm. Res., 28, pp. 1843-1858
dc.descriptionManno, C.S., Pierce, G.F., Arruda, V.R., Glader, B., Ragni, M., Rasko, J.J., Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response (2006) Nat. Med., 12, pp. 342-347
dc.descriptionMingozzi, F., Meulenberg, J.J., Hui, D.J., Basner-Tschakarjan, E., Hasbrouck, N.C., Edmonson, S.A., AAV-1-mediated gene transfer to skeletal muscle in humans results in dose-dependent activation of capsid-specific T cells (2009) Blood, 114, pp. 2077-2086
dc.descriptionSadelain, M., Papapetrou, E.P., Bushman, F.D., Safe harbours for the integration of new DNA in the human genome (2012) Nat. Rev. Cancer, 12, pp. 51-58
dc.descriptionPathak, A., Patnaik, S., Gupta, K.C., Recent trends in non-viral vector-mediated gene delivery (2009) Biotechnol. J., 4, pp. 1559-1572
dc.descriptionWei, J., Jones, J., Kang, J., Card, A., Krimm, M., Hancock, P., RNA-induced silencing complex-bound small interfering RNA is a determinant of RNA interference-mediated gene silencing in mice (2011) Mol. Pharmacol., 79, pp. 953-963
dc.descriptionLobovkina, T.T., Jacobson, G.B.G., Gonzalez-Gonzalez, E.E., Hickerson, R.P.R., Leake, D.D., Kaspar, R.L.R., In vivo sustained release of siRNA from solid lipid nanoparticles (2011) ACS Nano, 5, pp. 9977-9983
dc.descriptionGoyal, R., Tripathi, S.K., Tyagi, S., Ravi Ram, K., Ansari, K.M., Shukla, Y., Gellan gum blended PEI nanocomposites as gene delivery agents: Evidences from in vitro and in vivo studies (2011) Eur. J. Pharm. Biopharm., 79, pp. 3-14
dc.descriptionMcLachlan, G., Davidson, H., Holder, E., Davies, L.A., Pringle, I.A., Sumner-Jones, S.G., Pre-clinical evaluation of three non-viral gene transfer agents for cystic fibrosis after aerosol delivery to the ovine lung (2011) Gene Ther., 18, pp. 996-1005
dc.descriptionGinn, S.L., Alexander, I.E., Edelstein, M.L., Abedi, M.R., Wixon, J., Gene therapy clinical trials worldwide to 2012 - An update (2013) J. Gene Med., 15, pp. 65-77
dc.descriptionRehman, Z.U., Zuhorn, I.S., Hoekstra, D., How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances (2013) J. Control. Release, 166, pp. 46-56
dc.descriptionHope, M.J., Enhancing siRNA delivery by employing lipid nanoparticles (2014) Ther. Deliv., 5, pp. 663-673
dc.descriptionViola, J.R., El Andaloussi, S., Oprea, I.I., Smith, C.I.E., Non-viral nanovectors for gene delivery: Factors that govern successful therapeutics (2010) Expert Opin. Drug Deliv., 7, pp. 721-735
dc.descriptionGuo, X., Huang, L., Recent advances in nonviral vectors for gene delivery (2012) Acc. Chem. Res., 45, pp. 971-979
dc.descriptionCui, H., Feng, Y., Ren, W., Zeng, T., Lv, H., Pan, Y., Strategies of large scale synthesis of monodisperse nanoparticles (2009) Recent Pat. Nanotechnol., 3, pp. 32-41
dc.descriptionKim, J., Hwang, I., Britain, D., Chung, T.D., Sun, Y., Kim, D.-H., Microfluidic approaches for gene delivery and gene therapy (2011) Lab Chip, 11, pp. 3941-3948
dc.descriptionClement, J., Kiefer, K., Kimpfler, A., Garidel, P., Peschka-Süss, R., Large-scale production of lipoplexes with long shelf-life (2005) Eur. J. Pharm. Biopharm., 59, pp. 35-43
dc.descriptionBalbino, T.A., Azzoni, A.R., De La Torre, L.G., Microfluidic devices for continuous production of pDNA/cationic liposome complexes for gene delivery and vaccine therapy (2013) Colloids Surf., B, 111 C, pp. 203-210
dc.descriptionSaranya, N., Moorthi, A., Saravanan, S., Devi, M.P., Selvamurugan, N., Chitosan and its derivatives for gene delivery (2011) Int. J. Biol. Macromol., 48, pp. 234-238
dc.descriptionKhan, W., Hosseinkhani, H., Ickowicz, D., Hong, P.-D., Yu, D.-S., Domb, A.J., Polysaccharide gene transfection agents (2012) Acta Biomater., 8, pp. 4224-4232
dc.descriptionSokolova, V., Epple, M., Inorganic nanoparticles as carriers of nucleic acids into cells (2008) Angew. Chem. Int. Ed. Engl., 47, pp. 1382-1395
dc.descriptionChaturvedi, K., Ganguly, K., Kulkarni, A.R., Kulkarni, V.H., Nadagouda, M.N., Rudzinski, W.E., Cyclodextrin-based siRNA delivery nanocarriers: A state-of-the-art review (2011) Expert Opin. Drug Deliv., 8, pp. 1455-1468
dc.descriptionOrtiz Mellet, C., García Fernández, J.M., Benito, J.M., Cyclodextrin-based gene delivery systems (2011) Chem. Soc. Rev., 40, pp. 1586-1608
dc.descriptionLaga, R., Carlisle, R., Tangney, M., Ulbrich, K., Seymour, L.W., Polymer coatings for delivery of nucleic acid therapeutics (2012) J. Control. Release, 161, pp. 537-553
dc.descriptionElouahabi, A., Ruysschaert, J., Formation and intracellular trafficking of lipoplexes and polyplexes (2005) Mol. Ther., 11, pp. 336-347
dc.descriptionTorchilin, V.P., Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery (2008) Biopolymers, 90, pp. 604-610
dc.descriptionBolhassani, A., Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer (2011) Biochim. Biophys. Acta, 1816, pp. 232-246
dc.descriptionRuozi, B., Forni, F., Battini, R., Vandelli, M.A., Cationic liposomes for gene transfection (2003) J. Drug Target., 11, pp. 407-414
dc.descriptionZhou, H.-S., Liu, D.-P., Liang, C.-C., Challenges and strategies: The immune responses in gene therapy (2004) Med. Res. Rev., 24, pp. 748-761
dc.descriptionBondi, M.L., Craparo, E.F., Solid lipid nanoparticles for applications in gene therapy: A review of the state of the art (2010) Expert Opin. Drug Deliv., 7, pp. 7-18
dc.descriptionBunjes, H., Lipid nanoparticles for the delivery of poorly water-soluble drugs (2010) J. Pharm. Pharmacol., 62, pp. 1637-1645
dc.descriptionWissing, S.A., Kayser, O., Müller, R.H., Solid lipid nanoparticles for parenteral drug delivery (2004) Adv. Drug Deliv. Rev., 56, pp. 1257-1272
dc.descriptionBlasi, P.P., Giovagnoli, S.S., Schoubben, A.A., Ricci, M.M., Rossi, C.C., Solid lipid nanoparticles for targeted brain drug delivery (2007) Adv. Drug Deliv. Rev., 59, pp. 454-477
dc.descriptionMuchow, M., Maincent, P., Müller, R.H., Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery (2008) Drug Dev. Ind. Pharm., 34, pp. 1394-1405
dc.descriptionManjunath, K., Reddy, J.S., Venkateswarlu, V., Solid lipid nanoparticles as drug delivery systems (2005) Methods Find. Exp. Clin. Pharmacol., 27, pp. 127-144
dc.descriptionMüller, R.H., Mäder, K., Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art (2000) Eur. J. Pharm. Biopharm., 50, pp. 161-177
dc.descriptionDu Plessis, L.H., Marais, E.B., Mohammed, F., Kotze, A.F., Applications of lipid based formulation technologies in the delivery of biotechnology-based therapeutics (2014) Curr. Pharm. Biotechnol., 15, pp. 659-672
dc.descriptionOlbrich, C., Bakowsky, U., Lehr, C.M., Müller, R.H., Kneuer, C., Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA (2001) J. Control. Release, 77, pp. 345-355
dc.descriptionDe Jesus, M.B., Radaic, A., Zuhorn, I.S., Paula, E., Microemulsion extrusion technique: A new method to produce lipid nanoparticles (2013) J. Nanopart. Res., 15, pp. 1-15
dc.descriptionYu, Y.H., Kim, E., Park, D.E., Shim, G., Lee, S., Kim, Y.B., Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA (2012) Eur. J. Pharm. Biopharm., 80, pp. 268-273
dc.descriptionPatel, S., Chavhan, S., Soni, H., Babbar, A.K., Mathur, R., Mishra, A.K., Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route (2010) J. Drug Target.
dc.descriptionYu, W., Liu, C., Ye, J., Zou, W., Zhang, N., Xu, W., Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery (2009) Nanotechnology, 20, p. 215102
dc.descriptionGarud, A., Singh, D., Garud, N., Solid lipid nanoparticles (SLN): Method, characterization and applications (2012) Int. Curr. Pharm. J., 1, pp. 384-393
dc.descriptionTabatt, K., Sameti, M., Olbrich, C., Müller, R.H., Lehr, C.-M., Effect of cationic lipid and matrix lipid composition on solid lipid nanoparticle-mediated gene transfer (2004) Eur. J. Pharm. Biopharm., 57, pp. 155-162
dc.descriptionJenning, V., Thünemann, A.F., Gohla, S.H., Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids (2000) Int. J. Pharm., 199, pp. 167-177
dc.descriptionJenning, V., Gohla, S., Comparison of wax and glyceride solid lipid nanoparticles (SLN) (2000) Int. J. Pharm., 196, pp. 219-222
dc.descriptionFreitas, C., Müller, R.H., Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase (1999) Eur. J. Pharm. Biopharm., 47, pp. 125-132
dc.descriptionBunjes, H., Koch, M.H.J., Westesen, K., Influence of emulsifiers on the crystallization of solid lipid nanoparticles (2003) J. Pharm. Sci., 92, pp. 1509-1520
dc.descriptionMehnert, W., Mäder, K., Solid lipid nanoparticles: Production, characterization and applications (2001) Adv. Drug Deliv. Rev., 47, pp. 165-196
dc.descriptionAttama, A.A., SLN, NLC, LDC: State of the art in drug and active delivery (2011) Recent Pat. Drug Deliv. Formul., 5, pp. 178-187
dc.descriptionTros De Ilarduya, C., Sun, Y., Düzgüneş, N., Gene delivery by lipoplexes and polyplexes (2010) Eur. J. Pharm. Sci., 40, pp. 159-170
dc.descriptionParhi, R., Suresh, P., Preparation and characterization of solid lipid nanoparticles - A review (2012) Curr. Drug Discov. Technol., 9, pp. 2-16
dc.descriptionCorrias, F., Lai, F., New methods for lipid nanoparticles preparation (2011) Recent Pat. Drug Deliv. Formul., 5, pp. 201-213
dc.descriptionSouto, E.B., Severino, P., Santana, M.H.A., Pinho, S.C., Solid lipid nanoparticles: Classical methods of lab production (2011) Quim. Nova, 34, pp. 1762-1769
dc.descriptionRadomska-Soukharev, A., Stability of lipid excipients in solid lipid nanoparticles (2007) Adv. Drug Deliv. Rev., 59, pp. 411-418
dc.descriptionGasco, M.R., (1993) Method for Producing Solid Lipid Microspheres Having A Narrow Size Distribution, , 5250236
dc.descriptionMuller, R., Lucks, J., (1996) Arzneistoffträger Aus Festen Lipid Teilchen - Feste Lipid Nanosphären (SLN), , EP 0605497
dc.descriptionJiang, Z., Sun, C., Yin, Z., Zhou, F., Ge, L., Liu, X., Comparison of two kinds of nanomedicine for targeted gene therapy: Premodified or postmodified gene delivery systems (2012) Int. J. Nanomedicine, 7, pp. 2019-2031
dc.descriptionMüller, R.H., Shegokar, R., Keck, C.M., 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications (2011) Curr. Drug Discov. Technol., 8, pp. 207-227
dc.descriptionTabatt, K., Kneuer, C., Sameti, M., Olbrich, C., Müller, R.H., Lehr, C.-M., Transfection with different colloidal systems: Comparison of solid lipid nanoparticles and liposomes (2004) J. Control. Release, 97, pp. 321-332
dc.descriptionDingler, A., Gohla, S., Production of solid lipid nanoparticles (SLN): Scaling up feasibilities (2002) J. Microencapsul., 19, pp. 11-16
dc.descriptionBattaglia, L.S., Cavalli, R., Trotta, M., (2008) Method for the Preparation of Solid Lipid Micro and Nanoparticles, , WO2008149215A2
dc.descriptionZhang, Yun, Shen, Chen, Yao, Chen, Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction (2008) Chem. Eng. Sci., 63, pp. 5600-5605
dc.descriptionBalbino, T.A., Aoki, N.T., Gasperini, A.A.M., Oliveira, C.L.P., Azzoni, A.R., Cavalcanti, L.P., Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications (2013) Chem. Eng. J., 226, pp. 423-433
dc.descriptionBae, Y.H., Park, K., Targeted drug delivery to tumors: Myths, reality and possibility (2011) J. Control. Release, 153, pp. 198-205
dc.descriptionDel Pozo-Rodríguez, A., Delgado, D., Solinís, M.A., Gascón, A.R., Pedraz, J.L., Solid lipid nanoparticles: Formulation factors affecting cell transfection capacity (2007) Int. J. Pharm., 339, pp. 261-268
dc.descriptionKim, H.R., Kim, I.K., Bae, K.H., Lee, S.H., Lee, Y., Park, T.G., Cationic solid lipid nanoparticles reconstituted from low density lipoprotein components for delivery of siRNA (2008) Mol. Pharm., 5, pp. 622-631
dc.descriptionCarrillo, C., Sánchez-Hernández, N., García-Montoya, E., Pérez-Lozano, P., Suñé-Negre, J.M., Ticó, J.R., DNA delivery via cationic solid lipid nanoparticles (SLNs) (2013) Eur. J. Pharm. Sci., 49, pp. 157-165
dc.descriptionJores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., Mäder, K., Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy (2004) J. Control. Release, 95, pp. 217-227
dc.descriptionDe Jesus, M.B., Radaic, A., Hinrichs, W.L.J., Ferreira, C.V., De Paula, E., Hoekstra, D., Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency (2014) J. Biomed. Nanotechnol., 10, pp. 355-365
dc.descriptionYu, W., Liu, C., Liu, Y., Zhang, N., Xu, W., Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages (2010) Pharm. Res., 27, pp. 1584-1596
dc.descriptionVighi, E., Ruozi, B., Montanari, M., Battini, R., Leo, E., PDNA condensation capacity and in vitro gene delivery properties of cationic solid lipid nanoparticles (2010) Int. J. Pharm., 389, pp. 254-261
dc.descriptionMontana, G., Bondi, M.L., Carrotta, R., Picone, P., Craparo, E.F., San Biagio, P.L., Employment of cationic solid-lipid nanoparticles as RNA carriers (2007) Bioconjug. Chem., 18, pp. 302-308
dc.descriptionSouto, E.B., Almeida, A.J., Müller, R.H., Lipid nanoparticles (SLN, NLC) for cutaneous drug delivery: Structure, protection and skin effects (2007) J. Biomed. Nanotechnol., 3, pp. 317-331
dc.descriptionVighi, E.E., Leot, E.E., Montanari, M.M., Mucci, A.A., Hanuskova, M.M., Iannuccelli, V.V., Structural investigation and intracellular trafficking of a novel multicomposite cationic solid lipid nanoparticle platform as a pDNA carrier (2011) Ther. Deliv., 2, pp. 1419-1435
dc.descriptionJenning, V., Mäder, K., Gohla, S.H., Solid lipid nanoparticles (SLN) based on binary mixtures of liquid and solid lipids: A (1)H-NMR study (2000) Int. J. Pharm., 205, pp. 15-21
dc.descriptionGarcia-Fuentes, M., Alonso, M.J., Torres, D., Design and characterization of a new drug nanocarrier made from solid-liquid lipid mixtures (2005) J. Colloid Interface Sci., 285, pp. 590-598
dc.descriptionPietkiewicz, J., Sznitowska, M., Placzek, M., The expulsion of lipophilic drugs from the cores of solid lipid microspheres in diluted suspensions and in concentrates (2006) Int. J. Pharm., 310, pp. 64-71
dc.descriptionKarmali, P.P., Chaudhuri, A., Cationic liposomes as non-viral carriers of gene medicines: Resolved issues, open questions, and future promises (2007) Med. Res. Rev., 27, pp. 696-722
dc.descriptionWasungu, L., Hoekstra, D., Cationic lipids, lipoplexes and intracellular delivery of genes (2006) J. Control. Release, 116, pp. 255-264
dc.descriptionSpink, C.H., Chaires, J.B., Thermodynamics of the binding of a cationic lipid to DNA (1997) J. Am. Chem. Soc., 119, pp. 10920-10928
dc.descriptionBruinsma, R., Electrostatics of DNA-cationic lipid complexes: Isoelectric instability (1998) Eur. Phys. J. e Soft Matter, 4, pp. 75-88
dc.descriptionHarries, D., May, S., Gelbart, W.M., Ben-Shaul, A., Structure, stability, and thermodynamics of lamellar DNA-lipid complexes (1998) Biophys. J., 75, pp. 159-173
dc.descriptionZuidam, N.J., Hirsch-Lerner, D., Margulies, S., Barenholz, Y., Lamellarity of cationic liposomes and mode of preparation of lipoplexes affect transfection efficiency (1999) Biochim. Biophys. Acta, 1419, pp. 207-220
dc.descriptionKennedy, M.T., Pozharski, E.V., Rakhmanova, V.A., Macdonald, R.C., Factors governing the assembly of cationic phospholipid-DNA complexes (2000) Biophys. J., 78, pp. 1620-1633
dc.descriptionBarreleiro, P.C.A., Olofsson, G., Alexandridis, P., Interaction of DNA with cationic vesicles: A calorimetric study (2000) J. Phys. Chem. B, 104, pp. 7795-7802
dc.descriptionWagner, K., Harries, D., May, S., Kahl, V., Rädler, J.O., Ben-Shaul, A., Direct evidence for counterion release upon cationic lipid-DNA condensation (2000) Langmuir, 16, pp. 303-306
dc.descriptionMatulis, D., Rouzina, I., Bloomfield, V.A., Thermodynamics of cationic lipid binding to DNA and DNA condensation: Roles of electrostatics and hydrophobicity (2002) J. Am. Chem. Soc., 124, pp. 7331-7342
dc.descriptionEastman, S.J., Siegel, C., Tousignant, J., Smith, A.E., Cheng, S.H., Scheule, R.K., Biophysical characterization of cationic lipid: DNA complexes (1997) Biochim. Biophys. Acta, 1325, pp. 41-62
dc.descriptionPozharski, E., Macdonald, R.C., Lipoplex thermodynamics: Determination of DNA-cationic lipoid interaction energies (2003) Biophys. J., 85, pp. 3969-3978
dc.descriptionShirahama, K., Takashima, K., Takisawa, N., Interaction between dodecyltrimethylammonium chloride and DNA (1987) Bull. Chem. Soc. Jpn, 60, pp. 43-47
dc.descriptionHirsch-Lerner, D., Barenholz, Y., Hydration of lipoplexes commonly used in gene delivery: Follow-up by laurdan fluorescence changes and quantification by differential scanning calorimetry (1999) Biochim. Biophys. Acta, 1461, pp. 47-57
dc.descriptionLazaridis, T., (2013) Hydrophobic Effect, , John Wiley & Sons, Ltd
dc.descriptionOberle, V., Bakowsky, U., Zuhorn, I.S., Hoekstra, D., Lipoplex formation under equilibrium conditions reveals a three-step mechanism (2000) Biophys. J., 79, pp. 1447-1454
dc.descriptionMa, B., Zhang, S., Jiang, H., Zhao, B., Lv, H., Lipoplex morphologies and their influences on transfection efficiency in gene delivery (2007) J. Control. Release, 123, pp. 184-194
dc.descriptionBraun, C.S., Jas, G.S., Choosakoonkriang, S., Koe, G.S., The structure of DNA within cationic lipid/DNA complexes (2003) Biophys. J., 84, pp. 1114-1123
dc.descriptionKikuchi, I.S., Carmona-Ribeiro, A.M., Interactions between DNA and synthetic cationic liposomes (2000) J. Phys. Chem. B, 104, pp. 2829-2835
dc.descriptionPector, V., Backmann, J., Maes, D., Vandenbranden, M., Ruysschaert, J.M., Biophysical and structural properties of DNA.diC(14)-amidine complexes. Influence of the DNA/lipid ratio (2000) J. Biol. Chem., 275, pp. 29533-29538
dc.descriptionGershon, H., Ghirlando, R., Guttman, S.B., Minsky, A., Mode of formation and structural features of DNA-cationic liposome complexes used for transfection (1993) Biochemistry, 32, pp. 7143-7151
dc.descriptionSternberg, B., Sorgi, F.L., Huang, L., New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy (1994) FEBS Lett., 356, pp. 361-366
dc.descriptionLasic, D.D., Strey, H., Stuart, M.C.A., Podgornik, R., Frederik, P.M., The structure of DNA-liposome complexes (1997) J. Am. Chem. Soc., 119, pp. 832-833
dc.descriptionSmisterová, J., Wagenaar, A., Stuart, M.C., Polushkin, E., Ten Brinke, G., Hulst, R., Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery (2001) J. Biol. Chem., 276, pp. 47615-47622
dc.descriptionRädler, J.O., Koltover, I., Salditt, T., Safinya, C.R., Structure of DNA-cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes (1997) Science, 275, pp. 810-814
dc.descriptionBarreleiro, P.C.A., May, R.P., Lindman, B.R., Mechanism of formation of DNA-cationic vesicle complexes (2002) Faraday Discuss., 122, pp. 191-201
dc.descriptionKoltover, I., Salditt, T., Rädler, J.O., Safinya, C.R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery (1998) Science, 281, pp. 78-81
dc.descriptionRakhmanova, V.A., McIntosh, T.J., Macdonald, R.C., Effects of dioleoylphosphatidylethanolamine on the activity and structure of O-alkyl phosphatidylcholine-DNA transfection complexes (2000) Cell. Mol. Biol. Lett., 5, pp. 51-66
dc.descriptionSafinya, C.R., Structures of lipid-DNA complexes: Supramolecular assembly and gene delivery (2001) Curr. Opin. Struct. Biol., 11, pp. 440-448
dc.descriptionRullaud, V., Siragusa, M., Cumbo, A., Gygax, D., Shahgaldian, P., DNA surface coating of calixarene-based nanoparticles: A sequence-dependent binding mechanism (2012) Chem. Commun., 48, pp. 12186-12188
dc.descriptionHelttunen, K., Shahgaldian, P., Self-assembly of amphiphilic calixarenes and resorcinarenes in water (2010) New J. Chem., 34, pp. 2704-2714
dc.descriptionYe, J., Wang, A., Liu, C., Chen, Z., Zhang, N., Anionic solid lipid nanoparticles supported on protamine/DNA complexes (2008) Nanotechnology, 19, p. 285708
dc.descriptionDoktorovova, S., Shegokar, R., Rakovsky, E., Gonzalez-Mira, E., Lopes, C.M., Silva, A.M., Cationic solid lipid nanoparticles (cSLN): Structure, stability and DNA binding capacity correlation studies (2011) Int. J. Pharm., 420, pp. 341-349
dc.descriptionAsasutjarit, R., Lorenzen, S.-I., Sirivichayakul, S., Ruxrungtham, K., Ruktanonchai, U., Ritthidej, G.C., Effect of solid lipid nanoparticles formulation compositions on their size, zeta potential and potential for in vitro pHIS-HIV-hugag transfection (2007) Pharm. Res., 24, pp. 1098-1107
dc.descriptionMoghaddam, B., McNeil, S.E., Zheng, Q., Mohammed, A.R., Perrie, Y., Exploring the correlation between lipid packaging in lipoplexes and their transfection efficacy (2011) Pharmaceutics, 3, pp. 848-864
dc.descriptionMinchin, R.F., Yang, S., Endosomal disruptors in non-viral gene delivery (2010) Expert Opin. Drug Deliv., 7, pp. 331-339
dc.descriptionVarkouhi, A.K., Scholte, M., Storm, G., Haisma, H.J., Endosomal escape pathways for delivery of biologicals (2011) J. Control. Release, 151, pp. 220-228
dc.descriptionLiang, W., Lam, J.K.W., Endosomal escape pathways for non-viral nucleic acid delivery systems (2012) Intechopen.com
dc.descriptionRehman, Z.U., Hoekstra, D., Zuhorn, I.S., On the mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: Real-time visualization of transient membrane destabilization without endosomal lysis (2013) ACS Nano
dc.descriptionBehr, J.-P., The proton sponge: A trick to enter cells the viruses did not exploit (1997) Chimia, 51, pp. 1-2
dc.descriptionBenjaminsen, R.V., Mattebjerg, M.A., Henriksen, J.R., Moghimi, S.M., Andresen, T.L., The possible "proton sponge" effect of polyethylenimine (PEI) does not include change in lysosomal pH (2013) Mol. Ther., 21, pp. 149-157
dc.descriptionPinnaduwage, P., Schmitt, L., Huang, L., Use of a quaternary ammonium detergent in liposome mediated DNA transfection of mouse L-cells (1989) Biochim. Biophys. Acta, 985, pp. 33-37
dc.descriptionFarhood, H., Serbina, N., Huang, L., The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer (1995) Biochim. Biophys. Acta, 1235, pp. 289-295
dc.descriptionZelphati, O., Szoka, F., Mechanism of oligonucleotide release from cationic liposomes (1996) Proc. Natl. Acad. Sci. U. S. A., 93, pp. 11493-11498
dc.descriptionLee, E.R., Marshall, J., Siegel, C.S., Jiang, C., Yew, N.S., Nichols, M.R., Detailed analysis of structures and formulations of cationic lipids for efficient gene transfer to the lung (1996) Hum. Gene Ther., 7, pp. 1701-1717
dc.descriptionMok, K.W., Cullis, P.R., Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA (1997) Biophys. J., 73, pp. 2534-2545
dc.descriptionZuhorn, I.S., Bakowsky, U., Polushkin, E., Visser, W.H., Stuart, M.C.A., Engberts, J.B.F.N., Nonbilayer phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency (2005) Mol. Ther., 11, pp. 801-810
dc.descriptionWrobel, I., Collins, D., Fusion of cationic liposomes with mammalian cells occurs after endocytosis (1995) Biochim. Biophys. Acta, 1235, pp. 296-304
dc.descriptionHafez, I.M., Cullis, P.R., Roles of lipid polymorphism in intracellular delivery (2001) Adv. Drug Deliv. Rev., 47, pp. 139-148
dc.descriptionShi, F., Wasungu, L., Nomden, A., Stuart, M.C.A., Polushkin, E., Engberts, J.B.F.N., Interference of poly(ethylene glycol)-lipid analogues with cationic-lipid-mediated delivery of oligonucleotides
dc.descriptionRole of lipid exchangeability and non-lamellar transitions (2002) Biochem. J., 366, pp. 333-341
dc.descriptionChoi, S.H., Jin, S.-E., Lee, M.-K., Lim, S.-J., Park, J.-S., Kim, B.-G., Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells (2008) Eur. J. Pharm. Biopharm., 68, pp. 545-554
dc.descriptionRudolph, C., Schillinger, U., Ortiz, A., Tabatt, K., Plank, C., Müller, R.H., Application of novel solid lipid nanoparticle (SLN)-gene vector formulations based on a dimeric HIV-1 TAT-peptide in vitro and in vivo (2004) Pharm. Res., 21, pp. 1662-1669
dc.descriptionDelgado, D., Del Pozo-Rodríguez, A., Solinís M.Á., Rodríguez-Gascón, A., Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: The importance of the entry pathway (2011) Eur. J. Pharm. Biopharm., 79, pp. 495-502
dc.descriptionOlbrich, C.C., Müller, R.H.R., Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures (1999) Int. J. Pharm., 180, pp. 31-39
dc.descriptionXue, H.-Y., Wong, H.-L., Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization (2011) Biomaterials, 32, pp. 2662-2672
dc.descriptionDel Pozo-Rodríguez, A., Delgado, D., Solinís M.Á., Pedraz, J.L., Echevarría, E., Rodríguez, J.M., Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration (2010) Int. J. Pharm., 385, pp. 157-162
dc.descriptionLeung, A.K.K., Hafez, I.M., Baoukina, S., Belliveau, N.M., Zhigaltsev, I.V., Afshinmanesh, E., Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core (2012) J. Phys. Chem. C Nanomater. Interfaces, 116, pp. 18440-18450
dc.descriptionBunjes, H., Drechsler, M., Koch, M.H., Westesen, K., Incorporation of the model drug ubidecarenone into solid lipid nanoparticles (2001) Pharm. Res., 18, pp. 287-293
dc.descriptionHayes, M.E., Drummond, D.C., Hong, K., Park, J.W., Marks, J.D., Kirpotin, D.B., Assembly of nucleic acid-lipid nanoparticles from aqueous-organic monophases (2006) Biochim. Biophys. Acta, 1758, pp. 429-442
dc.descriptionSeverino, P., Pinho, S.C., Souto, E.B., Santana, M.H.A., Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles (2011) Colloids Surf., B, 86, pp. 125-130
dc.descriptionKuo, Y.-C., Wang, C.-C., Electrophoresis of human brain microvascular endothelial cells with uptake of cationic solid lipid nanoparticles: Effect of surfactant composition (2010) Colloids Surf., B, 76, pp. 286-291
dc.descriptionGriffin, W.C., Classification of surface-active agents by "hLB" (1949) J. Soc. Cosmet. Chem., 1, pp. 311-326
dc.descriptionHeurtault, B., Saulnier, P., Pech, B., Proust, J.-E., Benoit, J.-P., Physico-chemical stability of colloidal lipid particles (2003) Biomaterials, 24, pp. 4283-4300
dc.descriptionGasco, M.R., Lipid nanoparticles: Perspectives and challenges (2007) Adv. Drug Deliv. Rev., 59, pp. 377-378
dc.descriptionLiu, Z., Zhong, Z., Peng, G., Wang, S., Du, X., Yan, D., Folate receptor mediated intracellular gene delivery using the charge changing solid lipid nanoparticles (2009) Drug Deliv., 16, pp. 341-347
dc.descriptionSeetapan, N., Bejrapha, P., Srinuanchai, W., Ruktanonchai, U.R., Rheological and morphological characterizations on physical stability of gamma-oryzanol-loaded solid lipid nanoparticles (SLNs) (2010) Micron, 41, pp. 51-58
dc.descriptionVighi, E., Ruozi, B., Montanari, M., Battini, R., Leo, E., Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: Characterization and ability to bind the pEGFP-plasmid (2007) Eur. J. Pharm. Biopharm., 67, pp. 320-328
dc.descriptionAbdelwahed, W., Degobert, G., Stainmesse, S., Fessi, H., Freeze-drying of nanoparticles: Formulation, process and storage considerations (2006) Adv. Drug Deliv. Rev., 58, pp. 1688-1713
dc.descriptionDel Pozo-Rodríguez, A., Solinís, M.A., Gascón, A.R., Pedraz, J.L., Short- and long-term stability study of lyophilized solid lipid nanoparticles for gene therapy (2009) Eur. J. Pharm. Biopharm., 71, pp. 181-189
dc.descriptionPoxon, S.W., Hughes, J.A., The effect of lyophilization on plasmid DNA activity (2000) Pharm. Dev. Technol., 5, pp. 115-122
dc.descriptionHeiati, H., Tawashi, R., Phillips, N.C., Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization (1998) J. Microencapsul., 15, pp. 173-184
dc.descriptionChollet, P., Favrot, M.C., Hurbin, A., Coll, J.-L., Side-effects of a systemic injection of linear polyethylenimine-DNA complexes (2002) J. Gene Med., 4, pp. 84-91
dc.languageen
dc.publisherElsevier
dc.relationJournal of Controlled Release
dc.rightsfechado
dc.sourceScopus
dc.titleSolid Lipid Nanoparticles As Nucleic Acid Delivery System: Properties And Molecular Mechanisms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución