dc.creatorColombo A.F.
dc.creatorJoly C.A.
dc.date2010
dc.date2015-06-26T12:37:53Z
dc.date2015-11-26T14:58:08Z
dc.date2015-06-26T12:37:53Z
dc.date2015-11-26T14:58:08Z
dc.date.accessioned2018-03-28T22:09:54Z
dc.date.available2018-03-28T22:09:54Z
dc.identifier
dc.identifierBrazilian Journal Of Biology. , v. 70, n. 3 SUPPL., p. 697 - 708, 2010.
dc.identifier15196984
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-78751512242&partnerID=40&md5=ef9929baea8de4015950608127100d29
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/91261
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/91261
dc.identifier2-s2.0-78751512242
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255800
dc.descriptionAfter 500 years of exploitation and destruction, the Brazilian Atlantic Forest has been reduced to less the 8% of its original cover, and climate change may pose a new threat to the remnants of this biodiversity hotspot. In this study we used modelling techniques to determine present and future geographical distribution of 38 species of trees that are typical of the Brazilian Atlantic Forest (Mata Atlântica), considering two global warming scenarios. The optimistic scenario, based in a 0.5% increase in the concentration of CO2 in the atmosphere, predicts an increase of up to 2 °C in the Earth's average temperature; in the pessimistic scenario, based on a 1% increase in the concentration of CO2 in the atmosphere, temperature increase may reach 4 °C. Using these parameters, the occurrence points of the studied species registered in literature, the Genetic Algorithm for Rule-set Predictions/GARP and Maximum entropy modeling of species geographic distributions/MaxEnt we developed models of present and future possible occurrence of each species, considering Earth's mean temperature by 2050 with the optimistic and the pessimistic scenarios of CO2 emission. The results obtained show an alarming reduction in the area of possible occurrence of the species studied, as well as a shift towards southern areas of Brazil. Using GARP, on average, in the optimistic scenario this reduction is of 25% while in the pessimistic scenario it reaches 50%, and the species that will suffer the worst reduction in their possible area of occurrence are: Euterpe edulis, Mollinedia schottiana, Virola bicuhyba, Inga sessilis and Vochysia magnifica. Using MaxEnt, on average, in the optimistic scenario the reduction will be of 20% while in the pessimistic scenario it reaches 30%, and the species that will suffer the worst reduction are: Hyeronima alchorneoides, Schefflera angustissima, Andira fraxinifolia and the species of Myrtaceae studied.
dc.description70
dc.description3 SUPPL.
dc.description697
dc.description708
dc.descriptionAlmeida, F.F.M., Carneiro, C.D.R., Origem e evolução da Serra do Mar (1998) Revista Brasileira de Geociências, 28 (2), pp. 135-150
dc.descriptionBehling, H., Negrelle, R.R.B., Late Quaternary tropical rain forest and climate dynamics from the Atlantic lowland in southern Brazil (2001) Quaternary Research, 56, pp. 87-101
dc.descriptionBrow Jr., K.S., Conclusion, synthesis and alternative hypotheses (1987) Biogeography and Quartenary history in Tropical America, pp. 175-196. , In WHITMORE, TC. and PRANCE, GT. (Eds.), Oxford Science Publications
dc.descriptionBush, M.B., Oliveira, P.E., The rise and fall of the Refugial Hypothesis of Amazonian speciation: A paleoecological perspective (2006) Biota Neotropica, 6 (1). , http://www.biotaneotropica.org.br/v6n1/en/abstract?point-of-view+bn00106 012006, Available from
dc.descriptionCavalcanti, R.B., Joly, C.A., Biodiversity and Conservation Priorities in the Cerrado Region (2002) The Cerrados of Brazil. Ecology and Natural History of a Neotropical Savana, pp. 351-367. , In OLIVEIRA, PE. and MARQUIS, RJ. (Eds.), New York: Columbia Univesity Press
dc.descriptionChapman, A.D., Muñoz, M.E.S., Koch, I., Environmental information: Placing biodiversity phenomena in an ecological and environmental context (2005) Biodiversity Informatics, 2, pp. 24-41
dc.descriptionCosta, L.P., The historical bridge between the Amazon and the Atlantic Forest of Brazil: A study of molecular phylogeography with small mammals (2003) Journal of. Biogeography, 30 (1), pp. 71-86
dc.descriptionElith, J., Graham, C.H., Anderson, R.P., Novel methods improve prediction of species' distributions from occurrence data (2006) Ecography, 29, pp. 129-151
dc.descriptionFonseca, G.A.B., Small mammal species diversity in Brazilian tropical primary and secondary forests of different sizes (1989) Revista Brasileira de Zoologia, 6 (3), pp. 381-422
dc.description(1998) Atlas da evolução dos remanescentes florestais e ecossistemas associados no domínio da Mata Atlântica no período 1990-1995, , Fundação S.O.S. Mata Atlântica and Instituto Nacional de Pesquisas Espaciais - INPE, São Paulo
dc.description(1988) Mapa de Vegetação do Brasil, , Instituto Brasileiro de Geografia e Estatística - IBGE, Brasília, DF: IBGE
dc.description(1993) Mapa de vegetação do Brasil, , http://mapas.sosma.org.br/, Instituto Brasileiro de Geografia e Estatística - IBGE, Rio de Janeiro, IBGE. Available from
dc.description(2007) Climate change 2007: Mitigation - Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, , International Panel on Climate Change - IPCC, Cambridge: Cambridge University Press
dc.descriptionJoly, C.A., Aidar, M.P.M., Klink, C.A., Evolution of the Brazilian phytogeography classification systems: Implications for biodiversity conservation (1999) Ciência e Cultura, 51 (5-6), pp. 331-348
dc.descriptionKlockow, D., Targa, H.J., Vautz, W., (1997) Air pollution and vegetation damage in the tropics - the Serra do Mar as an example, , Geesthacht, Germany: GKSS -Forschungszentrum Geesthacht. Final Report 1990-1996
dc.descriptionKlump, A., Domingos, M., Klump, G., Foliar nutrient contents in tree species of the Atlantic Rain Forest as influenced by air pollution from the industrial complex of Cubatão, SE-Brazil (2002) Water, Air, Soil Pollution, 133, pp. 315-333
dc.descriptionLaurance, W.F., Delamonica, P., Ilhas de sobrevivência (1998) Ciência Hoje, 24, pp. 26-31
dc.descriptionLedru, M.P., Rousseau, D.D., Cruz Jr., F.W., Riccomini, C., Karmann, I., Martin, L., Paleoclimate changes during the last 100 ka from a record in the Brazilian Atlantic rainforest region and interhemispheric comparison (2005) Quaternary Research, 64, pp. 444-450
dc.descriptionLyons, K.S., A quantitative assessment of the rate of range shifts of Pleistocene mammals (2003) Journal of Mammalogy, 84, pp. 385-402
dc.descriptionMartinez-Meyer, E., Peterson, A.T., Hargrove, W.W., Ecological niches as stable distributional constraints for Pleistocene extinctions and climate change projections for biodiversity (2004) Global Ecology and Biogeography, 13, pp. 305-314
dc.descriptionMyers, N., Mittermeier, R.A., Mittermeier, C.G., Fonseca, G.A.B., Kent, J., Biodiversity hotspots for conservation priorities (2000) Nature, 403, pp. 853-858
dc.descriptionOliveira Filho, A.T., Fontes, M.A.L., Patterns of floristic differentiation among Atlantic forests in Southeastern Brazil, and the influence of climate (2000) Biotropica, 32 (4 B), pp. 793-810
dc.descriptionOliveira, R.J., (2001) Análise da variação florístico-estrutural das florestas atlânticas no estado de São Paulo, Brasil, , Campinas: Biology Institute State University of Campinas. [PhD Thesis]
dc.descriptionPeterson, A.T., Shaw, J., Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: Ecological niche models, predicted geographic distributions, and climate change effects (2003) International Journal for Parasitology, 33, pp. 919-931
dc.descriptionPeterson, A.T., Predicting species' geographic distributions based on ecological niche modeling (2001) The Condor, 103, pp. 599-605
dc.descriptionPeterson, A.T., Ball, L.G., Cohoon, K.C., Predicting distributions of Mexican birds using ecological niche modeling methods (2002) Ibis, 144, pp. 27-32
dc.descriptionPeterson, A.T., Papes, M., Eaton, M.U.I.R., Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent (2007) Ecography, 30 (4), pp. 550-560
dc.descriptionPeterson, A.T., Soberon, J., Sanchez-Cordero, V., Conservatism of ecological niches in evolutionary time (1999) Science, 285 (1265-1267)
dc.descriptionPhillips, S.J., Anderson, R.P., Schapire, R.E., Maximum entropy modeling of species geographic distributions (2006) Ecological Modelling, 190 (231-259)
dc.descriptionRibeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M., The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation (2009) Biological Conservation, 142, pp. 1141-1153
dc.descriptionRizzini, C.T., (1997) Tratado de fitogeografia do Brasil, , 2 ed. Ambito Cultural Edições Ltda
dc.descriptionRochelle, A.L.C., (2008) Heterogeneidade ambiental, diversidade e estrutura da comunidade arbórea de um trecho da Floresta Ombrófila, , Campinas: Biology Institute, State University of Campinas. [MSc Thesis]
dc.descriptionRodrigues, R.R., Martins, S.V., Gandolfi, S., (2007) High Diversity Forest Restoration in Degraded Areas: Methods and Projects in Brazil, , Hauppauge, New York: Nova Science Publishers
dc.descriptionSalis, S.M., Shepherd, G.J., Joly, C.A., Floristic comparison between mesophytic forests of the interior of the state of São Paulo, S.E. Brazil (1995) Vegetatio, 119, pp. 155-164
dc.descriptionScudeller, V.V., Martins, F.R., FITOGEO - um banco de dados aplicado à Fitogeografia (2003) Acta Amazônica, 33 (1), pp. 9-21
dc.descriptionSentelhas, P.C., Pereira, A.R., Angelocci, L.R., (2000) Meteorologia Agrícola, , 3 ed. Piracicaba, SP: ESALQ
dc.description(2006) Sistema de informação ambiental do programa, , http://sinbiota.cria.org.br/, SinBiota, BIOTA/FAPESP. Available from
dc.descriptionSiqueira, M.F., Peterson, A.T., Consequences of global climate change for geographic distributions of Cerrado tree species (2003) Biota Neotropica, 3 (2). , http://www.biotaneotropica.org.br/v3n2/pt/fullpaper?bn00803022003+en, Available from
dc.description(2006) Sistema de Informação Distribuído para Coleções Biológicas: A Integração do Species Analyst e do SinBiota, , http://splink.cria.org.br/, SpeciesLink, Available from
dc.descriptionStockwell, D.R.B., Noble, I., Induction of sets of rules from animal distribution data: A robust and informative method of data analysis (1992) Mathematics and Computer in Simulation, 33, pp. 385-390
dc.descriptionStockwell, D.R.B., Peters, D.P., The GARP modeling system: Problems and solutions to automated spatial prediction (1999) International Journal of Geographic Information Science, 13, pp. 143-158
dc.descriptionThomas, W.M.W., Carvalho, A.M.V., Amorim, A.M.A., Garrison, J., Arbeláz, A.L., Plant endemism in two forests in southern Bahia, Brazil (1998) Biodiversity and Conservation, 7, pp. 311-322
dc.descriptionThomaz, L.D., Monteiro, R., Composição florística da Mata Atlântica de encosta da Estação Biológica de Santa Lúcia, município de Santa Teresa-ES (1997) Boletim do Museu de Biologia Mello-Leitão, Nova Série, 7, pp. 3-48
dc.descriptionThompson, R.S., Mead, J.I., Late Quaternary environments and biogeography in the Great Basin (1982) Quaternary Research, 17, pp. 39-55
dc.descriptionWells, P.V., Paleobiogeography of montane islands in the Great Basin since the last glaciopluvial (1983) Ecological Monographs, 53, pp. 341-382
dc.languagept
dc.publisher
dc.relationBrazilian Journal of Biology
dc.rightsaberto
dc.sourceScopus
dc.titleBrazilian Atlantic Forest Lato Sensu: The Most Ancient Brazilian Forest, And A Biodiversity Hotspot, Is Highly Threatened By Climate Change [mata Atlântica Lato Sensu: A Mais Antiga Das Florestas Brasileiras, E Um Hotspot De Biodiversidade, Está Altamente Ameaçada Pelas Mudanças Climáticas]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución