Artículos de revistas
Field Emission Properties Of The Graphenated Carbon Nanotube Electrode
Registro en:
Applied Surface Science. Elsevier, v. 324, n. , p. 174 - 178, 2015.
1694332
10.1016/j.apsusc.2014.10.102
2-s2.0-84920673427
Autor
Zanin H.
Ceragioli H.J.
Peterlevitz A.C.
Baranauskas V.
Marciano F.R.
Lobo A.O.
Institución
Resumen
Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices. 324
174 178 Groning, O., Kuttel, O.M., Emmenegger, C., Groning, P., Schlapbach, L., Field emission properties of carbon nanotubes (2000) J. Vac. Sci. Technol. B, 18 (2), pp. 665-678 Getty, S.A., Auciello, O., Sumant, A.V., Wang, X., Glavin, D.P., Mahaffy, P.R., (2010) Characterization of Nitrogen-Incorporated Ultrananocrystalline Diamond As A Robust Cold Cathode Material, , Conference on Micro- and Nanotechnology Sensors, Systems, and Applications II, Orlando, FL Cui, J.B., Ristein, J., Ley, L., Low-threshold electron emission from diamond (1999) Phys. Rev. B, 60 (23), pp. 16135-16142 Chatterjee, V., Harniman, R., May, P.W., Barhai, P.K., Direct observation of electron emission from the grain boundaries of chemical vapour deposition diamond films by tunneling atomic force microscopy (2014) Appl. Phys. Lett., 104 (17) Milne, W.I., Teo, K.B.K., Minoux, E., Groening, O., Gangloff, L., Hudanski, L., Schnell, J.P., Amaratunga, G.A.J., Aligned carbon nanotubes/fibers for applications in vacuum microwave amplifiers (2006) J. Vac. Sci. Technol. B, 24 (1), pp. 345-348 Orlanducci, S., Guglielmotti, V., Cianchetta, I., Sessa, V., Tamburri, E., Toschi, F., Terranova, M.L., Rossi, M., One-step growth and shaping by a dual-plasma reactor of diamond nanocones arrays for the assembling of stable cold cathodes (2012) Nanosci. Nanotechnol. Lett., 4 (3), pp. 338-343 Zanin, H., May, P.W., Hamanaka, M.H.M.O., Corat, E.J., Field emission from hybrid diamond-like carbon and carbon nanotube composite structures (2013) ACS Appl. Mater. Interfaces, 5 (23), pp. 12238-12243 Xiao, X., Auciello, O., Cui, H., Lowndes, D.H., Merkulov, V.L., Carlisle, J., Synthesis and field emission properties of hybrid structures of ultrananocrystalline diamond and vertically aligned carbon nanofibers (2006) Diamond Relat. Mater., 15 (23), pp. 244-247 Zou, Y., May, P.W., Vieira, S.M.C., Fox, N.A., Field emission from diamond-coated multiwalled carbon nanotube "teepee" structures (2012) J. Appl. Phys., 112 (4) Chen, G., Shin, D.H., Kim, S., Roth, S., Lee, C.J., Improved field emission stability of thin multiwalled carbon nanotube emitters (2010) Nanotechnology, 21 (1) Pandey, A., Prasad, A., Moscatello, J.P., Engelhard, M., Wang, C., Yap, Y.K., Very stable electron field emission from strontium titanate coated carbon nanotube matrices with low emission thresholds (2013) ACS Nano, 7 (1), pp. 117-125 Hollanda, L.M., Lobo, A.O., Lancellotti, M., Berni, E., Corat, E.J., Zanin, H., Graphene and carbon nanotube nanocomposite for gene transfection (2014) Mater. Sci. Eng. C: Mater. Biol. Appl., 39, pp. 288-298 Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., Narrow graphene nanoribbons from carbon nanotubes (2009) Nature, 458, pp. 877-880 Geim, A.K., Novoselov, K.S., The rise of graphene (2007) Nat. Mater., 6 (3), pp. 183-191 Gokus, T., Nair, R.R., Bonetti, A., Boehmler, M., Lombardo, A., Novoselov, K.S., Geim, A.K., Hartschuh, A., Making graphene luminescent by oxygen plasma treatment (2009) ACS Nano, 3 (12), pp. 3963-3968 Eda, G., Unalan, H.E., Rupesinghe, N., Amaratunga, G.A.J., Chhowalla, M., Field emission from graphene based composite thin films (2008) Appl. Phys. Lett., 93 (23) Malesevic, A., Kemps, R., Vanhulsel, A., Chowdhury, M.P., Volodin, A., Van Haesendonck, C., Field emission from vertically aligned few-layer graphene (2008) J. Appl. Phys., 104 (8) Qian, M., Feng, T., Ding, H., Lin, L., Li, H., Chen, Y., Sun, Z., Electron field emission from screen-printed graphene films (2009) Nanotechnology, 20 (42) Huang, Y., Wang, W., She, J., Li, Z., Deng, S., Correlation between carbon-oxygen atomic ratio and field emission performance of few-layer reduced graphite oxide (2012) Carbon, 50 (7), pp. 2657-2665 Kung, S.C., Hwang, K.C., Lin, I.N., Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes (2002) Appl. Phys. Lett., 80 (25), pp. 4819-4821 Mathur, A., Roy, S.S., Hazra, K.S., Wadhwa, S., Ray, S.C., Mitra, S.K., Misra, D.S., McLaughlin, J.A., Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes (2012) Mater. Chem. Phys., 134 (1), pp. 425-429 Kurt, R., Klinke, C., Bonard, J.M., Kern, K., Karimi, A., Tailoring the diameter of decorated C-N nanotubes by temperature variations using HF-CVD (2001) Carbon, 39 (14), pp. 2163-2172 Parker, C.B., Raut, A.S., Brown, B., Stoner, B.R., Glass, J.T., Three-dimensional arrays of graphenated carbon nanotubes (2012) J. Mater. Res., 27 (7), pp. 1046-1053 Zanin, H., Margraf-Ferreira, A., Da Silva, N.S., Marciano, F.R., Corat, E.J., Lobo, A.O., Graphene and carbon nanotube composite enabling a new prospective treatment for trichomoniasis disease (2014) Mater. Sci. Eng. C: Mater. Biol. Appl., 41, pp. 65-69 Zanin, H., May, P.W., Lobo, A.O., Saito, E., Machado, J.P.B., Martins, G., Trava-Airoldi, V.J., Corat, E.J., Effect of multi-walled carbon nanotubes incorporation on the structure, optical and electrochemical properties of diamond-like carbon thin films (2014) J. Electrochem. Soc., 161 (5), pp. H290-H295 Tsukada, J., Zanin, H., Barbosa, L.C.A., Da Silva, G.A., Ceragioli, H.J., Peterlevitz, A.C., Teofilo, R.F., Baranauskas, V., Electro-deposition of carbon structures at mid voltage and room temperature using ethanol/aqueous solutions (2012) J. Electrochem. Soc., 159 (3), pp. D159-D161 Zanin, H., Saito, E., Ceragioli, H.J., Baranauskas, V., Corat, E.J., Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices (2014) Mater. Res. Bull., 49 (48), pp. 7-493 Antunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Verissimo, C., Comparative study of first- and second-order Raman spectra of MWCNT at visible and infrared laser excitation (2006) Carbon, 44 (11), pp. 2202-2211 Grinet, M.A.V.M., Zanin, H., Campos Granata, A.E., Porcionatto, M., Marciano, F.R., Lobo, A.O., Fast preparation of free-standing nanohydroxyapatite-vertically aligned carbon nanotube scaffolds (2014) J. Mater. Chem. B, 2 (9), pp. 1196-1204 Kundu, S., Nagaiah, T.C., Xia, W., Wang, Y., Van Dommele, S., Bitter, J.H., Santa, M., Muhlerf, M., Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction (2009) J. Phys. Chem. C, 113 (32), pp. 14302-14310 Zanin, H., Saito, E., Marciano, F.R., Ceragioli, H.J., Campos Granato, A.E., Porcionatto, M., Lobo, A.O., Fast preparation of nano-hydroxyapatite/superhydrophilic reduced graphene oxide composites for bioactive applications (2013) J. Mater. Chem. B, 1 (38), pp. 4947-4955 Liu, J., Zeng, B., Wang, X., Wang, W., Shi, H., One-step growth of vertical graphene sheets on carbon nanotubes and their field emission properties (2013) Appl. Phys. Lett., 103 (5) Chen, G., Futaba, D.N., Kimura, H., Sakurai, S., Yumura, M., Hata, K., Absence of an ideal single-walled carbon nanotube forest structure for thermal and electrical conductivities (2013) ACS Nano, 7 (11), pp. 10218-10224