dc.creatorDriemeier C.E.
dc.creatorLing L.Y.
dc.creatorPontes A.O.
dc.creatorSanches G.M.
dc.creatorFranco H.C.J.
dc.creatorMagalhaes P.S.G.
dc.creatorFerreira J.E.
dc.date2014
dc.date2015-06-25T17:59:16Z
dc.date2015-11-26T14:57:37Z
dc.date2015-06-25T17:59:16Z
dc.date2015-11-26T14:57:37Z
dc.date.accessioned2018-03-28T22:09:25Z
dc.date.available2018-03-28T22:09:25Z
dc.identifier9781479942886
dc.identifierProceedings - 2014 Ieee 10th International Conference On Escience, Escience 2014. Institute Of Electrical And Electronics Engineers Inc., v. 1, n. , p. 163 - 168, 2014.
dc.identifier
dc.identifier10.1109/eScience.2014.10
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84919490460&partnerID=40&md5=04410c876dbedb58836c7e6f1684e122
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87335
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87335
dc.identifier2-s2.0-84919490460
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255683
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionPrecision Agriculture (PA) comprises a set of tools to understand and manage inherent spatial variability within crop fields. PA relies on a variety of techniques to collect, analyze, process, and synthesize voluminous geo referenced data. However, prior to large-scale practice, PA requires a successful experimentation stage, which is the present stage of PA for the sugarcane system. This paper presents a data analysis workflow for PA experiments, including workflow application to a case study in a sugarcane area where an appreciable diversity of soil and plant attributes has been measured. Our data analysis workflow has basis on: i) removal of outliers, ii) representation of different data acquisition techniques on a common spatial grid, iii) estimation of typical 'noise' level in each measured attribute, iv) spatial autocorrelation analysis for each attribute, v) correlation analysis to identify related attributes, and vi) principal component analysis to reduce the dimensionality of the attribute space. By treating the diversity of measured attributes on a common ground, the proposed analysis workflow guides further experimentation as well as selection of data acquisition technologies suitable for large-scale sugarcane PA.
dc.description1
dc.description
dc.description163
dc.description168
dc.descriptionFAPESP 2011/028179; FAPESP; São Paulo Research Foundation
dc.descriptionFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.descriptionZamykal, D., Everingham, Y.L., (2009) Climate Change, Intercropping, Pest Control and Beneficial Microorganisms, pp. 189-218
dc.descriptionBramley, R.G.V., Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application (2009) Crop Pasture Sci, 60, p. 197
dc.descriptionSrinivasan, A., Precision Agriculture: An overview (2006) Handb. Precis. Agric., pp. 3-18
dc.descriptionCortez, L.A., (2010) Sugarcane Bioethanol: R&D for Productivity and Sustainability, , First. São Paulo: Blucher-FAPESP
dc.descriptionFood and Agriculture Organization of the United Nations FAOSTAT, , http://faostat.fao.org/, 05 May, 2014 Accessed
dc.descriptionMagalhães, P.S.G., Cerri, D.G.P., Yield monitoring of sugar cane (2007) Biosyst. Eng., 96, pp. 1-6
dc.descriptionSilva, C.B., Moraes, M.A.F.D., Molin, J.P., Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state (2010) Brazil. Precis. Agric., 12, pp. 67-81
dc.descriptionBramley, R., Trengove, S.A.M., Precision agriculture in australia: Present status and recent development (2013) Eng. Agric., 33, pp. 575-588
dc.descriptionPortz, G., Molin, J.P., Jasper, J., Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields (2011) Precis. Agric., 13, pp. 33-44
dc.descriptionDe Souza, Z.M., Guilherme, D., Cerri, P., Hemrique, L., Rodrigues, A., Análise dos atributos do solo e da produtividade da cultura de cana-de-Açúcar com o uso da geoestatística e árvore de decisão (2010) Ciencia Rural, 40 (4), pp. 840-847
dc.descriptionCerri, D.G.P., Magalhães, P.S.G., Correlation of physical and chemical attributes of soil with sugarcane yield (2012) Pesquisa Agropecuária Bras., 47, pp. 613-620
dc.descriptionRodrigues, F.A., Magalhães, P.S.G., Franco, H.C.J., Beauclair, E.G.F., Cerri, D.G.P., Correlation between Chemical Soil Attributes and Sugarcane Quality Parameters According to Soil Texture Zones (2013) Soil. Sci., 178, pp. 147-156
dc.descriptionJohnson, R.M., Richard, E.P., (2005) Sugarcane Yield, Sugarcane Quality, and Soil Variability in Louisiana, pp. 760-771
dc.descriptionRodrigues, F.A., Magalhães, P.S.G., Franco, H.C.J., Soil attributes and leaf nitrogen estimating sugar cane quality parameters: Brix, pol and fibre (2013) Precis. Agric., 14, pp. 270-289
dc.descriptionSchuster, E.W., Infrastructure for data-driven agriculture: Identifying management zones for cotton using statistical modeling and machine learning techniques (2011) Emerging Technologies for A Smarter World (CEWIT), IEEE 8th International Conference & Expo on
dc.descriptionMa, Q., The data acquisition for precision agriculture based on remote sensing (2006) Geoscience and Remote Sensing Symposium, IGARSS, IEEE International Conference on
dc.descriptionTan, L., An extensible and integrated software architecture for data analysis and visualization in precision agriculture (2012) Information Reuse and Integration (IRI), IEEE 13th International Conference on
dc.descriptionLing, L.Y., Driemeier, C., Cesar, R.M., Data-oriented research for bioresource utilization: A case study to investigate water uptake in cellulose using Principal Components (2012) E-Science (E-Science) IEEE 8th Int Conf., pp. 1-7
dc.descriptionFerreira, J.E., Reducing exception handling complexity in business process modeling and implementation: The WED-flow approach (2010) Procs. 18th Conference on Cooperative Information Systems (CoopIS), 6426, pp. 150-167. , Lecture Notes in Computer Science. Springer
dc.descriptionGarcia-Molina, H., Salem, K., Sagas (1987) Proceedings of the 1987 ACM SIGMOD International Conference on Management of Data, SIGMOD'87, pp. 249-259
dc.descriptionAtkins, P., De Paula, J., (2002) Physical Chemistry, , New York: Freeman
dc.descriptionCliff, A.D., Ord, J.K., (1981) Spatial Autocorrelation: Models & Applications, , London: Pion
dc.descriptionJohnson, R.A., Wichern, D.W., (2002) Applied Multivariate Statistical Analysis, , Prentice Hall International
dc.descriptionWhelan, B.M., McBratney, A.B., The null hypothesis of precision agriculture management (2000) Precision Agriculture, 2 (3), pp. 265-279
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationProceedings - 2014 IEEE 10th International Conference on eScience, eScience 2014
dc.rightsfechado
dc.sourceScopus
dc.titleData Analysis Workflow For Experiments In Sugarcane Precision Agriculture
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución