Artículos de revistas
Structural And Magnetic Properties Of Dilute Magnetic Oxide Based On Nanostructured Co-doped Anatase Tio2 (ti1-xco Xo2-δ)
Registro en:
Journal Of Physical Chemistry C. , v. 117, n. 25, p. 13252 - 13260, 2013.
19327447
10.1021/jp4017129
2-s2.0-84879635081
Autor
De Souza T.E.
Mesquita A.
De Zevallos A.O.
Beron F.
Pirota K.R.
Neves P.P.
Doriguetto A.C.
De Carvalho H.B.
Institución
Resumen
Nanostructured Co-doped anatase TiO2 (Ti1-xCo xO2-δ) samples were prepared and studied with particular emphasis on their compositional, structural, and magnetic properties. A detailed microstructural analysis was carried out to investigate the nature of the Co incorporation into the anatase TiO2 matrix. By combining different techniques, we confirmed the replacement of Ti4+ by Co 2+ ions in the anatase TiO2 structure. Neither segregated secondary phases nor Co-rich nanocrystals were detected. Co doping was found to introduce oxygen vacancies into the system by means of a charge-compensation process. Superconducting quantum interference device magnetometry demonstrated paramagnetic Curie-Weiss behavior with antiferromagnetic interactions even in the presence of a high density of oxygen vacancies. The fitting of the M(H) curves in the limits of low and high temperatures enable the fractions of isolated and antiferromagnetically coupled Co ions to be extracted. We discuss the observed magnetic behavior of our samples considering the current main theories for the magnetic properties of dilute magnetic oxides. © 2013 American Chemical Society. 117 25 13252 13260 Ohno, H., Semiconductors: Toward Functional Spintronics (2001) Science, 291, pp. 840-841 Wang, M., Campion, R.P., Rushforth, A.W., Edmonds, K.W., Foxon, C.T., Gallagher, B.L., Achieving High Curie Temperature in (Ga, Mn)As (2008) Appl. Phys. Lett., 93, pp. 1321031-1321033 Olejník, K., Owen, M.H.S., Novák, V., Mašek, J., Irvine, A.C., Wunderlich, J., Jungwirth, T., Enhanced Annealing, High Curie Temperature, and Low-Voltage Gating in (Ga, Mn)As: A Surface Oxide Study (2008) Phys. Rev. B, 78, pp. 0544031-0544034 Chen, L., Yan, S., Xu, P.F., Lu, J., Wang, W.Z., Deng, J.J., Qian, X., Zhao, J.H., Low-Temperature Magnetotransport Behaviours of Heavily Mn-Doped (Ga,Mn)As Films with High Ferromagnetic Transition Temperature (2009) Appl. Phys. Lett., 95, pp. 1825051-1825053 Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D., Zener Model Description of Ferromagnetism in Zinc-Blend Magnetic Semiconductors (2000) Science, 287, pp. 1019-1022 Matsumoto, Y., Room-Temperatura Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide (2001) Science, 291, pp. 854-856 Janisch, R., Gopal, P., Spaldin, N.A., Transition Metal-Doped TiO2 and ZnO: Present Status of the Field (2005) J. Phys.: Condens. Matter, 17, pp. R657-R689 Matsumoto, Y., Takahashi, R., Murakami, M., Koida, T., Fan, X.-J., Hasegawa, T., Fukumura, T., Koinuma, H., Ferromagnetism in Co-Doped TiO2 Rutile Thin Films Grown by Laser Molecular Beam Epitaxy (2001) Jpn. J. Appl. Phys. Part 2, 40, pp. L1204-L1206 Chambers, S.A., Thevuthasan, S., Farrow, R.F.C., Marks, R.F., Thiele, J.U., Folks, L., Samant, M.G., Diebold, U., Epitaxial Growth and Properties of Ferromagnetic Co-Doped TiO2 Anatase (2001) Appl. Phys. Lett., 79, pp. 3467-3469 Chambers, S.A., Droubay, T., Wang, C.M., Lea, A.S., Farrow, R.F.C., Folks, L., Deline, V., Anders, S., Clusters and Magnetism in Epitaxial Co-Doped TiO2 Anatase (2003) Appl. Phys. Lett., 82, pp. 1257-1259 Kim, J.-Y., Park, J.-H., Park, B.-G., Noh, H.-J., Oh, S.-J., Yang, J., Kim, D.-H., Chen, C.T., Ferromagnetism Induced by Clustered Co in Co-Doped Anatase TiO 2 Thin Films (2003) Phys. Rev. Lett., 90, pp. 0174011-0174014 Yan, W., Sun, Z., Pan, Z., Liu, Q., Yao, T., Wu, Z., Song, C., Wei, S., Oxygen Vacancy Effect on Room-Temperature Ferromagnetism of Rutile Co:TiO2 Thin Films (2009) Appl. Phys. Lett., 94, pp. 042508042511-0425083 Singhal, R.K., Kumar, S., Kumari, P., Xing, Y.T., Saitovitch, E., Evidence of Defect-Induced Ferromagnetism and Its "switch" Action in Pristine Bulk TiO2 (2011) Appl. Phys. Lett., 98, pp. 092510092511-0925103 Quilty, J.W., Shibata, A., Son, J.-Y., Takubo, K., Mizokawa, T., Toyosaki, H., Fukumura, T., Kawasaki, M., Signature of Carrier-Induced Ferromagnetism in Ti1-Cox O 2-δ: Exchange Interaction between High-Spin Co2+ and the Ti 3d Conduction Band (2006) Phys. Rev. Lett., 96, pp. 0272021-0272024 Yamada, Y., Fukumura, T., Ueno, K., Kawasaki, M., Control of Ferromagnetism at Room Temperature in (Ti,Co)O 2-δ via Chemical Doping of Electron Carries (2011) Appl. Phys. Lett., 99, pp. 2425021-2425023 Calderón, M.J., Das Sarma, S., Theory of Carrier Mediated Ferromagnetism in Diluted Magnetic Oxides (2007) Ann. Phys., 322, pp. 2618-2634 Coey, J.M.D., Venkatesan, M., Fitzgerald, C.B., Donor Impurity Band Exchange in Diluted Ferromagnetic Oxides (2005) Nat. Mater., 4, pp. 173-179 Griffin, K.A., Pakhomov, A.B., Wang, C.M., Heald, S.M., Krishnan, K.M., Intrinsic Ferromagnetism in Insulating Cobalt Doped Anatase TiO 2 (2005) Phys. Rev. Lett., 94, pp. 1572041-1572044 Yamada, Y., Ueno, K., Fukumura, T., Yuan, H.T., Shimotani, H., Iwasa, Y., Gu, L., Kawasaki, M., Electrically Induced Ferromagnetism at Room Temperature in Cobalt-Doped Titanium Dioxide (2011) Science, 332, pp. 1065-1067 Chen, Y., Lin, A., Gan, F., Preparation of Nano-TiO2 from TiCl4 by Dialysis Hydrolysis (2006) Powder Technol., 167, pp. 109-116 Barsoum, M.W., Series in Materials Science and Engineering (2003) Fundamentals of Ceramics, , IoP: London Errico, L.A., Rentería, M., Weissmann, M., Theoretical Study of Magnetism in Transition-Metal-Doped TiO2 and TiO2-δ (2005) Phys. Rev. B, 72, pp. 1844251-1844258 Jaffe, J.E., Droubay, T.C., Chambers, S.A., Oxygen Vacancies and Ferromagnetism in CoxTi1-x O2- x - Y (2005) J. Appl. Phys., 97, pp. 0739081-0739086 Forro, L., Chauvet, O., Emin, D., Zuppiroli, L., Berger, H., Levy, F., High-Mobility n -Type Charge Carriers in Large Single Crystals of Anatase (TiO2) (1994) J. Appl. Phys., 75, pp. 633-635 Woicik, J.C., Nelson, E.J., Kronik, L., Jain, M., Chelikowsky, J.R., Heskett, D., Berman, L.E., Herman, G.S., Hybridization and Bond-Orbital Components in Site-Specific X-ray Photoelectron Spectra of Rutile TiO2 (2002) Phys. Rev. Lett., 89, pp. 0774011-0774014 Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Koinuma, H., Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide (2001) Science, 291, pp. 854-856 Chambers, S.A., Heald, S.M., Droubay, T., Local Co Structure in Epitaxial CoxTi1- xO 2-x Anatase (2003) Phys. Rev. B, 67, pp. 1004011-1004014 Ogale, S.B., Choudhary, R.J., Buban, J.P., Lofland, S.E., Shinde, S.R., Kale, S.N., Kulkarni, V.N., Venkatesan, T., High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-Doped SnO2-δ (2003) Phys. Rev. Lett., 91, pp. 0772051-0772054 Shinde, S.R., Ogale, S.B., Das Sarma, S., Simpson, J.R., Drew, H.D., Lofland, S.E., Lanci, C., Venkatesan, T., Ferromagnetism in Laser Deposited Anatase Ti1- xCo xO2-δ Films (2003) Phys. Rev. B, 67, pp. 1152111-1152116 Pechini, M.P., Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form A Capacitor (1967), U.S. Patent 3,330,697, Jul 11Larson, A.C., Von Dreele, R.B., Los Alamos National Laboratory Report LAUR 86-748 (2000) General Structure Analysis System (GSAS), , Los Alamos National Laboratory: Los Alamos, NM Toby, B.H., EXPGUI, a Graphical User Interface for GSAS (2001) J. Appl. Crystallogr., 34, pp. 210-213 Michalowicz, A., Moscovici, J., Muller-Bouvet, D., Provost, K., MAX: Multiplataform Applications for XAFS (2009) J. Phys.: Conf. Ser., 190, pp. 0120341-0120344 Ankudinov, A.L., Ravel, B., Conradson, S.D., Rehr, J.J., Real-space Multiple-Scattering Calculation and Interpretation of X-ray-Absorption Near-Edge Structure (1998) Phys. Rev. B, 58, pp. 7565-7576 Shannon, R.D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides (1976) Acta Crystallogr. A, 32, pp. 751-767 Swamy, V., Kuznetsov, A., Dubrovinsky, L.S., Caruso, R.A., Shchukin, D.G., Muddle, B.C., Finite-Size and Pressure Effects on the Raman Spectrum Nanocrystalline Anatase TiO2 (2005) Phys. Rev. B, 71, pp. 1843021-18430211 Lin, Y.B., Yang, Y.M., Zhuang, B., Huang, S.L., Wu, L.P., Huang, Z.G., Zhang, F.M., Du, Y.W., Ferromagnetism of Co-Doped TiO2 Films Prepared by Plasma Enhanced Chemical Vapour Deposition (PECVD) Method (2008) J. Phys. D: Appl. Phys., 41, pp. 1950071-1950075 Orikasa, Y., Ina, T., Nakao, T., Mineshige, A., Amezawa, K., Oishi, M., Arai, H., Uchimoto, Y., X-ray Absorption Spectroscopic Study on La0.6Sr 0.4CoO3-δ Cathode Materials Related with Oxygen Vacancy Formation (2011) J. Phys. Chem. C, 115, pp. 16433-16438 Roberts, K.G., Varela, M., Rashkeev, S., Pantelides, S.T., Pennycook, S.J., Krishnan, K.M., Defect-Mediated Ferromagnetism in Insulating Co-doped Anatase TiO 2 Thin Films (2008) Phys. Rev. B, 78, pp. 0144091-0144096 Hasnain, S.S., X-ray Absorption Fine Structure (1991) Proceedings of the VI International Conference on X-ray Absorption Fine Structures, , Ellis Horwood: New York De Groot, F.M.F., Fuggle, J.C., Thole, B.T., Sawatzky, G.A., L2,3 X-ray Absorption Edges of d0 Compounds: K +, Ca2+, Sc3+, and Ti4+ in O h (Octahedral) Symmetry (1990) Phys. Rev. B, 41, pp. 928-938 Nachimuthu, P., Thevuthasan, S., Adams, E.M., Weber, W.J., Begg, B.D., Mun, B.S., Shuh, D.K., Perera, R.C.C., Near-Edge X-ray Absorption Fine Structure Study of Disordering in Gd -2(Ti1- yZry)2O7 Pyrochlores (2005) J. Phys. Chem. B, 109, pp. 1337-1339 Jan, J.C., Tsai, H.M., Pao, C.W., Chiou, J.W., Asokan, C.K., Kumar, K.P.K., Pong, W.F., Hsieh, W.F., Direct Experimental Evidence of Hybridization of Pb States with O 2p States in Ferroelectric Perovskite Oxides (2005) Appl. Phys. Lett., 87, pp. 0121031-0121033 Jan, J.C., Kumar, K.P.K., Chiou, J.W., Tsai, H.M., Shih, H.L., Hsueh, H.C., Ray, S.C., Hsieh, W.F., Effect of the Ca Content on the Electronic Structure of Pb 1- xCaxTiO3 Perovskites (2003) Appl. Phys. Lett., 83, pp. 3311-3313 Kucheyev, S.O., Buuren, T.V., Baumann, T.F., Satcher, J.J.H., Willey, T.M., Meulenberg, R.W., Felter, T.E., Terminello, L.J., Eletronic Structure of Titania Aerogels from Soft X-ray Absorption Spectroscopy (2004) Phys. Rev. B, 69, pp. 2451021-2451027 Krüger, P., Multichannel Multiple Scattering Calculation of L-2,L -3-Edge Spectra of TiO2 and SrTiO3: Importance of Multiplet Coupling and Band Structure (2010) Phys. Rev. B, 81, pp. 1251211-1251216 Cullity, B.D., Graham, C.D., (1972) Introduction to Magnetic Materials, , Addison-Wesley: Reading Rodríguez-Torres, C.E., Cabrera, A.F., Errico, L.A., Adán, C., Requejo, F.G., Weissmann, M., Stewart, S.J., Local Structure and Magnetic Behaviour of Fe-Doped TiO2 Anatase Nanoparticles: Experiments and Calculations (2008) J. Phys.: Condens. Matter, 20, pp. 1352101-1352109 Twardowski, A., Swagten, H.J.M., De Jonge, W.J.M., Demianiuk, M., Magnetic Behavior of the Diluted Magnetic Semiconductor Zn 1- xMnxSe (1987) Phys. Rev. B, 36, pp. 7013-7023 Lewicki, A., Schindler, A.I., Furdyna, J.K., Giriat, W., Magnetic Susceptibility of Zn1- xCoxS and Zn 1- xCoxSe Alloys (1989) Phys. Rev. B, 40, pp. 2379-2382 Alawadhi, H., Miotkowski, I., Lewicki, A., Ramdas, A.K., Miotkowska, S., McElfresh, M., Magnetic Susceptibility and Compositional Dependence of the Energy Gap in Cd1- xCoxTe (2002) J. Phys: Condens. Matter, 14, pp. 4611-4620 De Carvalho, H.B., De Godoy, M.P.F., Pais, R.W.D., Mir, M., De Zevallos, A.O., Iikawa, F., Brasil, M.J.S.P., Sabioni, A.C.S., Absence of Ferromagnetic Order in High Quality Bulk Co-Doped ZnO Samples (2010) J. Appl. Phys., 108, pp. 0339141-0339145 Kittel, C., (1996) Introduction to Solid State Physics, , Wiley: New York Bonanni, A., Navarro-Quezada, A., Li, T., Wegscheider, M., Matej, Z., Holy, V., Lechner, R.T., Dietl, T., Controlled Aggregation of Magnetic Ions in a Semiconductor: An Experimental Demonstration (2008) Phys. Rev. Lett., 101, pp. 1355021-1355024 Rossell, M.D., Ramasse, Q.M., Findlay, S.D., Rechberger, F., Erni, R., Niederberger, M., Direct Imaging of Dopant Clustering in Metal-Oxide Nanoparticles (2012) ACS Nano, 6, pp. 7077-7083 Singhal, R.K., Samariya, A., Kumar, S., Xing, Y.T., Jain, D.C., Dolia, S.N., Deshpande, U.P., Saitovitch, E.B., Study of Defect-Induced Ferromagnetism in Hydrogenated Anatase TiO 2:Co (2010) J. Appl. Phys., 107, pp. 1139161-1139167 Choudhury, B., Choudhury, A., Maidul Islam, A.K.M., Alagarsamy, P., Mukherjee, M., Effect of Oxygen Vacancy and Dopant Concentration on the Magnetic Properties of High Spin Co2+ Doped TiO2 Nanoparticles (2011) J. Magn. Magn. Mater., 323, pp. 440-446 Roberts, K.G., Varela, M., Rashkeev, S., Pantelides, S.T., Pennycook, S.J., Krishnan, K.M., Deffect-Mediated Ferromagnetism in Insulating Co-Doped Anatase TiO 2 Thin Films (2008) Phys. Rev. B, 78, pp. 0144091-0144096 Ohtsuki, T., Chainani, A., Eguchi, R., Matsunami, M., Takata, Y., Taguchi, M., Nishino, Y., Shin, S., Role of Ti 3d Carriers in Mediating the Ferromagnetism of Co:TiO 2 Anatase Thin Films (2011) Phys. Rev. Lett., 106, pp. 0476021-0476024 Singh, V.R., Ishigami, K., Verma, V.K., Shibata, G., Yamazaki, Y., Kataoka, T., Fujimori, A., Kawasaki, M., Ferromagnetism of Cobalt-Doped Anatase TiO2 Studied by Bulk- and Surface-Sensitive Soft X-ray Magnetic Circular Dichroism (2012) Appl. Phys. Lett., 100, pp. 2424041-2424045