dc.creatorMartins L.F.
dc.creatorAntunes L.P.
dc.creatorPascon R.C.
dc.creatorde Oliveira J.C.F.
dc.creatorDigiampietri L.A.
dc.creatorBarbosa D.
dc.creatorPeixoto B.M.
dc.creatorVallim M.A.
dc.creatorViana-Niero C.
dc.creatorOstroski E.H.
dc.creatorTelles G.P.
dc.creatorDias Z.
dc.creatorda Cruz J.B.
dc.creatorJuliano L.
dc.creatorVerjovski-Almeida S.
dc.creatorda Silva A.M.
dc.creatorSetubal J.C.
dc.date2013
dc.date2015-06-25T19:10:18Z
dc.date2015-11-26T14:57:18Z
dc.date2015-06-25T19:10:18Z
dc.date2015-11-26T14:57:18Z
dc.date.accessioned2018-03-28T22:09:10Z
dc.date.available2018-03-28T22:09:10Z
dc.identifier
dc.identifierPlos One. , v. 8, n. 4, p. - , 2013.
dc.identifier19326203
dc.identifier10.1371/journal.pone.0061928
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84876543348&partnerID=40&md5=7085e8efba03e208bf78dc402f881715
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88485
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88485
dc.identifier2-s2.0-84876543348
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255630
dc.descriptionComposting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders. © 2013 Martins et al.
dc.description8
dc.description4
dc.description
dc.description
dc.descriptionRyckeboer, J., Mergaert, J., Vaes, K., Klammer, S., De Clercq, D., A survey of bacteria and fungi occurring during composting and self-heating processes (2003) Annals of Microbiology, 53, pp. 349-410
dc.descriptionIshii, K., Takii, S., Comparison of microbial communities in four different composting processes as evaluated by denaturing gradient gel electrophoresis analysis (2003) Journal of Applied Microbiology, 95, pp. 109-119
dc.descriptionSteger, K., Eklind, Y., Olsson, J., Sundh, I., Microbial community growth and utilization of carbon constituents during thermophilic composting at different oxygen levels (2005) Microbial Ecology, 50, pp. 163-171
dc.descriptionTakebayashi, S., Narihiro, T., Fujii, Y., Hiraishi, A., Water availability is a critical determinant of a population shift from Proteobacteria to Actinobacteria during start-up operation of mesophilic fed-batch composting (2007) Microbes and Environments, 22, pp. 279-289
dc.descriptionVargas-Garcia, M.C., Suarez-Estrella, F., Lopez, M.J., Moreno, J., Microbial population dynamics and enzyme activities in composting processes with different starting materials (2010) Waste Management, 30, pp. 771-778
dc.descriptionPartanen, P., Hultman, J., Paulin, L., Auvinen, P., Romantschuk, M., Bacterial diversity at different stages of the composting process (2010) BMC Microbiology, 10, p. 94
dc.descriptionKumar, S., Composting of municipal solid waste (2011) Critical Reviews in Biotechnology, 31, pp. 112-136
dc.descriptionPeters, S., Koschinsky, S., Schwieger, F., Tebbe, C.C., Succession of microbial communities during hot composting as detected by PCR-single-strand-conformation polymorphism-based genetic profiles of small-subunit rRNA genes (2000) Applied and Environmental Microbiology, 66, pp. 930-936
dc.descriptionAlfreider, A., Peters, S., Tebbe, C.C., Rangger, A., Insam, H., Microbial community dynamics during composting of organic matter as determined by 16S ribosomal DNA analysis (2002) Compost Science & Utilization, 10, pp. 303-312
dc.descriptionSteger, K., Sjogren, A.M., Jarvis, A., Jansson, J.K., Sundh, I., Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste (2007) Journal of Applied Microbiology, 103, pp. 487-498
dc.descriptionGuo, Y., Zhu, N., Zhu, S., Deng, C., Molecular phylogenetic diversity of bacteria and its spatial distribution in composts (2007) Journal of Applied Microbiology, 103, pp. 1344-1354
dc.descriptionFranke-Whittle, I.H., Knapp, B.A., Fuchs, J., Kaufmann, R., Insam, H., Application of COMPOCHIP microarray to investigate the bacterial communities of different composts (2009) Microbial Ecology, 57, pp. 510-521
dc.descriptionAnastasi, A., Varese, G.C., Marchisio, V.F., Isolation and identification of fungal communities in compost and vermicompost (2005) Mycologia, 97, pp. 33-44
dc.descriptionHultman, J., Vasara, T., Partanen, P., Kurola, J., Kontro, M.H., Determination of fungal succession during municipal solid waste composting using a cloning-based analysis (2010) Journal of Applied Microbiology, 108, pp. 472-487
dc.descriptionBent, S.J., Forney, L.J., The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity (2008) The ISME Journal, 2, pp. 689-695
dc.descriptionHong, S.H., Bunge, J., Leslin, C., Jeon, S., Epstein, S.S., Polymerase chain reaction primers miss half of rRNA microbial diversity (2009) The ISME Journal, 3, pp. 1365-1373
dc.descriptionvan Elsas, J.D., Boersma, F.G.H., A review of molecular methods to study the microbiota of soil and the mycosphere (2011) European Journal of Soil Biology, 47, pp. 77-87
dc.descriptionGonzalez, J.M., Portillo, M.C., Belda-Ferre, P., Mira, A., Amplification by PCR Artificially Reduces the Proportion of the Rare Biosphere in Microbial Communities (2012) PloS ONE, 7, pp. e29973
dc.descriptionLombard, N., Prestat, E., van Elsas, J.D., Simonet, P., Soil-specific limitations for access and analysis of soil microbial communities by metagenomics (2011) FEMS Microbiology Ecology, 78, pp. 31-49
dc.descriptionAllgaier, M., Reddy, A., Park, J.I., Ivanova, N., D'haeseleer, P., Targeted discovery of glycoside hydrolases from a switchgrass-adapted compost community (2010) PloS ONE, 5, pp. e8812
dc.descriptionShokralla, S., Spall, J.L., Gibson, J.F., Hajibabaei, M., Next-generation sequencing technologies for environmental DNA research (2012) Molecular Ecology, 21, pp. 1794-1805
dc.descriptionThomas, T., Gilbert, J., Meyer, F., Metagenomics - a guide from sampling to data analysis (2012) Microbial Informatics and Experimentation, 2, p. 3
dc.descriptionSimon, C., Daniel, R., Achievements and new knowledge unraveled by metagenomic approaches (2009) Applied Microbiology and Biotechnology, 85, pp. 265-276
dc.descriptionDelmont, T.O., Malandain, C., Prestat, E., Larose, C., Monier, J.M., Metagenomic mining for microbiologists (2011) The ISME Journal, 5, pp. 1837-1843
dc.descriptionBrulc, J.M., Antonopoulos, D.A., Miller, M.E.B., Wilson, M.K., Yannarell, A.C., Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases (2009) Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 1948-1953
dc.descriptionHess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Metagenomic discovery of biomass-degrading genes and genomes from cow rumen (2011) Science, 331, pp. 463-467
dc.descriptionDai, X., Zhu, Y.X., Luo, Y.F., Song, L., Liu, D., Metagenomic insights into the fibrolytic microbiome in yak rumen (2012) PloS ONE, 7, pp. e40430
dc.descriptionGladden, J.M., Allgaier, M., Miller, C.S., Hazen, T.C., VanderGheynst, J.S., Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass (2011) Applied and Environmental Microbiology, 77, pp. 5804-5812
dc.descriptionDougherty, M.J., D'Haeseleer, P., Hazen, T.C., Simmons, B.A., Adams, P.D., Glycoside hydrolases from a targeted compost metagenome, activity-screening and functional characterization (2012) BMC Biotechnology, 12, p. 38
dc.descriptionCurtis, T.P., Sloan, W.T., Scannell, J.W., Estimating prokaryotic diversity and its limits (2002) Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 10494-10499
dc.descriptionTorsvik, V., Ovreas, L., Thingstad, T.F., Prokaryotic diversity-magnitude, dynamics, and controlling factors (2002) Science, 296, pp. 1064-1066
dc.descriptionSchloss, P.D., Handelsman, J., Toward a census of bacteria in soil (2006) PLoS Computational Biology, 2, pp. e92
dc.descriptionDillon, R.J., Dillon, V.M., The gut bacteria of insects: Nonpathogenic interactions (2004) Annual Review of Entomology, 49, pp. 71-92
dc.descriptionGill, S.R., Pop, M., Deboy, R.T., Eckburg, P.B., Turnbaugh, P.J., Metagenomic analysis of the human distal gut microbiome (2006) Science, 312, pp. 1355-1359
dc.descriptionLey, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Evolution of mammals and their gut microbes (2008) Science, 320, pp. 1647-1651
dc.descriptionDeAngelis, K.M., Gladden, J.M., Allgaier, M., D'haeseleer, P., Fortney, J.L., Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulolytic microbial communities (2010) Bioenergy Research, 3, pp. 146-158
dc.descriptionWarnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite (2007) Nature, 450, pp. 560-565
dc.descriptionHollister, E.B., Forrest, A.K., Wilkinson, H.H., Ebbole, D.J., Malfatti, S.A., Structure and dynamics of the microbial communities underlying the carboxylate platform for biofuel production (2010) Applied Microbiology and Biotechnology, 88, pp. 389-399
dc.descriptionRamette, A., Multivariate analyses in microbial ecology (2007) FEMS Microbiology Ecology, 62, pp. 142-160
dc.descriptionMeyer, F., Paarmann, D., D'Souza, M., Olson, R., Glass, E.M., The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes (2008) BMC Bioinformatics, 9, p. 386
dc.descriptionCole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., The Ribosomal Database Project: improved alignments and new tools for rRNA analysis (2009) Nucleic Acids Research, 37, pp. D141-D145
dc.descriptionSteger, K., Jarvis, A., Vasara, T., Romantschuk, M., Sundh, I., Effects of differing temperature management on development of Actinobacteria populations during composting (2007) Research in Microbiology, 158, pp. 617-624
dc.descriptionDees, P.M., Ghiorse, W.C., Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA (2001) FEMS Microbiology Ecology, 35, pp. 207-216
dc.descriptionKlammer, S., Knapp, B., Insam, H., Dell'Abate, M.T., Ros, M., Bacterial community patterns and thermal analyses of composts of various origins (2008) Waste Management & Research, 26, pp. 173-187
dc.descriptionWang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy (2007) Applied and Environmental Microbiology, 73, pp. 5261-5267
dc.descriptionSchloss, P.D., Hay, A.G., Wilson, D.B., Walker, L.P., Tracking temporal changes of bacterial community fingerprints during the initial stages of composting (2003) FEMS Microbiology Ecology, 46, pp. 1-9
dc.descriptionAtkinson, C.F., Jones, D.D., Gauthier, J.J., Putative anaerobic activity in aerated composts (1996) Journal of Industrial Microbiology, 16, pp. 182-188
dc.descriptionLynd, L.R., Weimer, P.J., van Zyl, W.H., Pretorius, I.S., Microbial cellulose utilization: Fundamentals and biotechnology (2002) Microbiology and Molecular Biology Reviews, 66, pp. 506-577
dc.descriptionYi, J., Wu, H.Y., Wu, J., Deng, C.Y., Zheng, R., Molecular phylogenetic diversity of Bacillus community and its temporal-spatial distribution during the swine manure of composting (2012) Applied Microbiology and Biotechnology, 93, pp. 411-421
dc.descriptionKato, S., Haruta, S., Cui, Z.J., Ishii, M., Igarashi, Y., Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria (2004) FEMS Microbiology Ecology, 51, pp. 133-142
dc.descriptionBugg, T.D.H., Ahmad, M., Hardiman, E.M., Rahmanpour, R., Pathways for degradation of lignin in bacteria and fungi (2011) Natural Product Reports, 28, pp. 1883-1896
dc.descriptionTuomela, M., Vikman, M., Hatakka, A., Itavaara, M., Biodegradation of lignin in a compost environment: a review (2000) Bioresource Technology, 72, pp. 169-183
dc.descriptionYu, H., Zeng, G.M., Huang, H.L., Xi, X.M., Wang, R.Y., Microbial community succession and lignocellulose degradation during agricultural waste composting (2007) Biodegradation, 18, pp. 793-802
dc.descriptionRastogi, G., Bhalla, A., Adhikari, A., Bischoff, K.M., Hughes, S.R., Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains (2010) Bioresource Technology, 101, pp. 8798-8806
dc.descriptionGu, Y., Ding, Y., Ren, C., Sun, Z., Rodionov, D.A., Reconstruction of xylose utilization pathway and regulons in Firmicutes (2010) BMC Genomics, 11, p. 255
dc.descriptionGihring, T.M., Green, S.J., Schadt, C.W., Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes (2012) Environmental Microbiology, 14, pp. 285-290
dc.descriptionAoshima, M., Pedro, M.S., Haruta, S., Ding, L.X., Fukada, T., Analyses of microbial community within a composter operated using household garbage with special reference to the addition of soybean oil (2001) Journal of Bioscience and Bioengineering, 91, pp. 456-461
dc.descriptionHemmi, H., Shimoyama, T., Nakayama, T., Hoshi, K., Nishino, T., Molecular biological analysis of microflora in a garbage treatment process under thermoacidophilic conditions (2004) Journal of Bioscience and Bioengineering, 97, pp. 119-126
dc.descriptionAdams, J.D., Frostick, L.E., Analysis of bacterial activity, biomass and diversity during windrow composting (2009) Waste Management, 29, pp. 598-605
dc.descriptionAzadnia, P., Zamani, M.H., Ghasemi, S.A., Babaki, A.K., Jashni, M.K., Isolation and identification of thermophilic Lactobacilli from traditional yoghurts of tribes of Kazerun (2011) Journal of Animal and Veterinary Advances, 10, pp. 774-776
dc.descriptionDobson, A., Cotter, P.D., Ross, R.P., Hill, C., Bacteriocin production: a probiotic trait? (2012) Applied and Environmental Microbiology, 78, pp. 1-6
dc.descriptionSingh, S., Goswami, P., Singh, R., Heller, K.J., Application of molecular identification tools for Lactobacillus, with a focus on discrimination between closely related species: A review (2009) Lwt-Food Science and Technology, 42, pp. 448-457
dc.descriptionLukjancenko, O., Ussery, D.W., Wassenaar, T.M., Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera (2012) Microbial Ecology, 63, pp. 651-673
dc.descriptionScheirlinck, I., Van der Meulen, R., Van Schoor, A., Huys, G., Vandamme, P., Lactobacillus crustorum sp nov., isolated from two traditional Belgian wheat sourdoughs (2007) International Journal of Systematic and Evolutionary Microbiology, 57, pp. 1461-1467
dc.descriptionTanasupawat, S., Shida, O., Okada, S., Komagata, K., Lactobacillus acidipiscis sp nov and Weissella thailandensis sp nov., isolated from fermented fish in Thailand (2000) International Journal of Systematic and Evolutionary Microbiology, 50, pp. 1479-1485
dc.descriptionCanchaya, C., Claesson, M.J., Fitzgerald, G.F., van Sinderen, D., O'Toole, P.W., Diversity of the genus Lactobacillus revealed by comparative genomics of five species (2006) Microbiology-SGM, 152, pp. 3185-3196
dc.descriptionVentura, M., O'Flaherty, S., Claesson, M.J., Turroni, F., Klaenhammer, T.R., Genome-scale analyses of health-promoting bacteria: probiogenomics (2009) Nature Reviews Microbiology, 7, pp. 61-71
dc.descriptionEndo, A., Futagawa-Endo, Y., Dicks, L.M.T., Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores (2010) Anaerobe, 16, pp. 590-596
dc.descriptionTatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., The COG database: an updated version includes eukaryotes (2003) BMC Bioinformatics, 4, p. 41
dc.descriptionPiddock, L.J.V., Multidrug-resistance efflux pumps - not just for resistance (2006) Nature Reviews Microbiology, 4, pp. 629-636
dc.descriptionCottrell, M.T., Yu, L.Y., Kirchman, D.L., Sequence and expression analyses of Cytophaga-like hydrolases in a Western arctic metagenomic library and the Sargasso seat (2005) Applied and Environmental Microbiology, 71, pp. 8506-8513
dc.descriptionDemain, A.L., Newcomb, M., Wu, J.H.D., Cellulase, clostridia, and ethanol (2005) Microbiology and Molecular Biology Reviews, 69, pp. 124-154
dc.descriptionFontes, C.M.G.A., Gilbert, H.J., Cellulosomes: Highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates (2010) Annual Review of Biochemistry, 79, pp. 655-681
dc.descriptionBugg, T.D.H., Ahmad, M., Hardiman, E.M., Singh, R., The emerging role for bacteria in lignin degradation and bio-product formation (2011) Current Opinion in Biotechnology, 22, pp. 394-400
dc.descriptionSanchez, C., Lignocellulosic residues: Biodegradation and bioconversion by fungi (2009) Biotechnol Advances, 27, pp. 185-194
dc.descriptionSugano, Y., DyP-type peroxidases comprise a novel heme peroxidase family (2009) Cellular and Molecular Life Sciences, 66, pp. 1387-1403
dc.descriptionRoberts, J.N., Singh, R., Grigg, J.C., Murphy, M.E.P., Bugg, T.D.H., Characterization of dye-decolorizing peroxidases from Rhodococcus jostii RHA1 (2011) Biochemistry, 50, pp. 5108-5119
dc.descriptionAhmad, M., Taylor, C.R., Pink, D., Burton, K., Eastwood, D., Development of novel assays for lignin degradation: comparative analysis of bacterial and fungal lignin degraders (2010) Molecular Biosystems, 6, pp. 815-821
dc.descriptionBrown, M.E., Walker, M.C., Nakashige, T.G., Iavarone, A.T., Chang, M.C.Y., Discovery and characterization of heme enzymes from unsequenced Bacteria: Application to microbial lignin degradation (2011) Journal of the American Chemical Society, 133, pp. 18006-18009
dc.descriptionMarkowitz, V.M., Ivanova, N.N., Szeto, E., Palaniappan, K., Chu, K., IMG/M: a data management and analysis system for metagenomes (2008) Nucleic Acids Research, 36, pp. D534-D538
dc.descriptionLamendella, R., Domingo, J.W., Ghosh, S., Martinson, J., Oerther, D.B., Comparative fecal metagenomics unveils unique functional capacity of the swine gut (2011) BMC Microbiology, 11, p. 103
dc.descriptionvan der Lelie, D., Taghavi, S., McCorkle, S.M., Li, L.L., Malfatti, S.A., The metagenome of an anaerobic microbial community decomposing poplar wood chips (2012) PloS ONE, 7, pp. e36740
dc.descriptionEdwards, M.C., Doran-Peterson, J., Pectin-rich biomass as feedstock for fuel ethanol production (2012) Applied Microbiology and Biotechnology, 95, pp. 565-575
dc.descriptionRynk, R., van de Kamp, M., Willson, G.B., Singley, M.E., Richard, T.L., (1992) On-Farm Composting Handbook, Northeast Regional Agricultural Engineering Service - Cooperative Extension, p. 186. , Rynk R, editor. Ithaca, NY: Northeast Regional Agricultural Engineering Service
dc.descriptionBitencourt, A.L.V., Vallim, M.A., Maia, D., Spinelli, R., Angeloni, R., Core sampling test in large-scale compost cells for microorganism isolation (2010) African Journal of Microbiology Research, 4, pp. 1631-1634
dc.descriptionSegata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., Metagenomic microbial community profiling using unique clade-specific marker genes (2012) Nat Methods, 9, pp. 811-814
dc.descriptionSayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Database resources of the National Center for Biotechnology Information (2012) Nucleic Acids Research, 40, pp. D13-D25
dc.descriptionAltschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs (1997) Nucleic Acids Research, 25, pp. 3389-3402
dc.descriptionLarkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., Clustal W and clustal X version 2.0 (2007) Bioinformatics, 23, pp. 2947-2948
dc.languageen
dc.publisher
dc.relationPLoS ONE
dc.rightsaberto
dc.sourceScopus
dc.titleMetagenomic Analysis Of A Tropical Composting Operation At The São Paulo Zoo Park Reveals Diversity Of Biomass Degradation Functions And Organisms
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución