Artículos de revistas
The Role Of Neuronal Ampk As A Mediator Of Nutritional Regulation Of Food Intake And Energy Homeostasis
Registro en:
Metabolism: Clinical And Experimental. , v. 62, n. 2, p. 171 - 178, 2013.
260495
10.1016/j.metabol.2012.07.001
2-s2.0-84872685812
Autor
Pimentel G.D.
Ropelle E.R.
Rocha G.Z.
Carvalheira J.B.C.
Institución
Resumen
Hypothalamic 5′-adenosine monophosphate-activated protein kinase (AMPK) senses intracellular metabolic stress, i.e., an increase in the cellular AMP:ATP ratio, and integrates diverse hormonal and nutritional signals to restore energy balance. Recent evidence suggests that different nutrients can modulate AMPK activity in the hypothalamus, thereby controlling weight gain through a leptin-independent mechanism. Understanding the mechanisms by which nutrients control hypothalamic AMPK activity is crucial to the development of effective nutritional interventions for the treatment of food intake-related disorders, such as anorexia and obesity. This article highlights the current evidence for the intricate relationship between nutrients and hypothalamic AMPK activity. © 2013 Elsevier Inc. 62 2 171 178 Flegal, K.M., Graubard, B.I., Williamson, D.F., Gail, M.H., Excess deaths associated with underweight, overweight, and obesity (2005) Journal of the American Medical Association, 293 (15), pp. 1861-1867. , DOI 10.1001/jama.293.15.1861 Fearon, K., Strasser, F., Anker, S.D., Definition and classification of cancer cachexia: An international consensus (2011) Lancet Oncol, 12, pp. 489-495 Pauling, L., Evolution and the need for ascorbic acid (1970) Proc Natl Acad Sci U S A, 67, pp. 1643-1648 Cameron, E., Pauling, L., Ascorbic acid and the glycosaminoglycans. An orthomolecular approach to cancer and other diseases (1973) Oncology, 27, pp. 181-192 Pauling, L., Alcantara, E.N., Speckmann, E.W., Diet, nutrition, and cancer (1977) American Journal of Clinical Nutrition, 30 (5), pp. 661-663 A critique of low-carbohydrate ketogenic weight reduction regimens. A review of Dr. Atkins' diet revolution (1973) JAMA, 224, pp. 1415-1419 Gardner, C.D., Kiazand, A., Alhassan, S., Kim, S., Stafford, R.S., Balise, R.R., Kraemer, H.C., King, A.C., Comparison of the Atkins, Zone, Ornish, and LEARN diets for change in weight and related risk factors among overweight premenopausal women: The A to Z weight loss study: A randomized trial (2007) Journal of the American Medical Association, 297 (9), pp. 969-977. , http://jama.ama-assn.org/cgi/reprint/297/9/969, DOI 10.1001/jama.297.9.969 Schwartz, M.W., Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity (2001) Journal of Clinical Investigation, 108 (7), pp. 963-964. , DOI 10.1172/JCI200114127 Morton, G.J., Cummings, D.E., Baskin, D.G., Barsh, G.S., Schwartz, M.W., Central nervous system control of food intake and body weight (2006) Nature, 443 (7109), pp. 289-295. , DOI 10.1038/nature05026, PII NATURE05026 Woods, A., Cheung, P.C., Smith, F.C., Characterization of AMP-activated protein kinase beta and gamma subunits. Assembly of the heterotrimeric complex in vitro (1996) J Biol Chem, 271, pp. 10282-10290 Dhillo, W.S., Appetite regulation: An overview (2007) Thyroid, 17 (5), pp. 433-445. , DOI 10.1089/thy.2007.0018 Ropelle, E.R., Pauli, J.R., Zecchin, K.G., Ueno, M., De Souza, C.T., Morari, J., Faria, M.C., Carvalheira, J.B.C., A central role for neuronal adenosine 5′-monophosphate-activated protein kinase in cancer-induced anorexia (2007) Endocrinology, 148 (11), pp. 5220-5229. , http://endo.endojournals.org/cgi/reprint/148/11/5220, DOI 10.1210/en.2007-0381 Carvalheira, J.B.C., Ribeiro, E.B., Araujo, E.P., Guimaraes, R.B., Telles, M.M., Torsoni, M., Gontijo, J.A.R., Saad, M.J.A., Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats (2003) Diabetologia, 46 (12), pp. 1629-1640. , DOI 10.1007/s00125-003-1246-x Ropelle, E.R., Fernandes, M.F., Flores, M.B., Central exercise action increases the AMPK and mTOR response to leptin (2008) PLoS One, 3, p. 3856 Ropelle, E.R., Pauli, J.R., Fernandes, M.F., A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss (2008) Diabetes, 57, pp. 594-605 Ropelle, E.R., Pauli, J.R., Prada, P., Inhibition of hypothalamic Foxo1 expression reduced food intake in diet-induced obesity rats (2009) J Physiol, 587, pp. 2341-2351 Ropelle, E.R., Flores, M.B., Cintra, D.E., IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition (2010) PLoS Biol, 8, p. 1000465 Pimentel, G.D., Lira, F.S., Rosa, J.C., Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFkappaBp65 signaling in adult offspring (2012) J Nutr Biochem, 23, pp. 265-271 Xue, B., Kahn, B.B., AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues (2006) Journal of Physiology, 574 (1), pp. 73-83. , DOI 10.1113/jphysiol.2006.113217 Minokoshi, Y., Alquier, T., Furukawa, H., Kim, Y.-B., Lee, A., Xue, B., Mu, J., Kahn, B.B., AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus (2004) Nature, 428 (6982), pp. 569-574. , DOI 10.1038/nature02440 Kahn, B.B., Alquier, T., Carling, D., Hardie, D.G., AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism (2005) Cell Metabolism, 1 (1), pp. 15-25. , DOI 10.1016/j.cmet.2004.12.003, PII S1550413104000099 Cota, D., Proulx, K., Blake Smith, K.A., Kozma, S.C., Thomas, G., Woods, S.C., Seeley, R.J., Hypothalamic mTOR signaling regulates food intake (2006) Science, 312 (5775), pp. 927-930. , DOI 10.1126/science.1124147 Lage, R., Dieguez, C., Vidal-Puig, A., AMPK: A metabolic gauge regulating whole-body energy homeostasis (2008) Trends Mol Med, 14, pp. 539-549 Kola, B., Hubina, E., Tucci, S.A., Kirkham, T.C., Garcia, E.A., Mitchell, S.E., Williams, L.M., Korbonits, M., Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase (2005) Journal of Biological Chemistry, 280 (26), pp. 25196-25201. , DOI 10.1074/jbc.C500175200 Claret, M., Smith, M.A., Batterham, R.L., Selman, C., Choudhury, A.I., Fryer, L.G.D., Clements, M., Withers, D.J., AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons (2007) Journal of Clinical Investigation, 117 (8), pp. 2325-2336. , http://www.jci.org/cgi/reprint/117/8/2325, DOI 10.1172/JCI31516 Lopez, M., Lage, R., Saha, A.K., Perez-Tilve, D., Vazquez, M.J., Varela, L., Sangiao-Alvarellos, S., Vidal-Puig, A., Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin (2008) Cell Metabolism, 7 (5), pp. 389-399. , DOI 10.1016/j.cmet.2008.03.006, PII S1550413108000776 Lopez, M., Varela, L., Vazquez, M.J., Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance (2010) Nat Med, 16, pp. 1001-1008 Claret, M., Smith, M.A., Knauf, C., Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice (2011) Diabetes, 60, pp. 735-745 Carling, D., Hardie, D.G., The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase (1989) Biochimica et Biophysica Acta - Molecular Cell Research, 1012 (1), pp. 81-86. , DOI 10.1016/0167-4889(89)90014-1 Beg, Z.H., Allmann, D.W., Gibson, D.M., Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol (1973) Biochem Biophys Res Commun, 54, pp. 1362-1369 Carlson, C.A., Kim, K.H., Regulation of hepatic acetyl coenzyme A carboxylase by phosphorylation and dephosphorylation (1973) J Biol Chem, 248, pp. 378-380 Hardie, D.G., The AMP-activated protein kinase pathway - New players upstream and downstream (2004) Journal of Cell Science, 117 (23), pp. 5479-5487. , DOI 10.1242/jcs.01540 Minokoshi, Y., Kim, Y.-B., Peroni, O.D., Fryer, L.G.D., Muller, C., Carling, D., Kahn, B.B., Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase (2002) Nature, 415 (6869), pp. 339-343. , DOI 10.1038/415339a Kubota, N., Yano, W., Kubota, T., Yamauchi, T., Itoh, S., Kumagai, H., Kozono, H., Kadowaki, T., Adiponectin stimulates amp-activated protein kinase in the hypothalamus and increases food intake (2007) Cell Metabolism, 6 (1), pp. 55-68. , DOI 10.1016/j.cmet.2007.06.003, PII S1550413107001593 Hayes, M.R., Bradley, L., Grill, H.J., Endogenous hindbrain glucagon-like peptide-1 receptor activation contributes to the control of food intake by mediating gastric satiation signaling (2009) Endocrinology, 150, pp. 2654-2659 Andersson, U., Filipsson, K., Abbott, C.R., Woods, A., Smith, K., Bloom, S.R., Carling, D., Small, C.J., AMP-activated Protein Kinase Plays a Role in the Control of Food Intake (2004) Journal of Biological Chemistry, 279 (13), pp. 12005-12008. , DOI 10.1074/jbc.C300557200 Obici, S., Feng, Z., Arduini, A., Conti, R., Rossetti, L., Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production (2003) Nature Medicine, 9 (6), pp. 756-761. , DOI 10.1038/nm873 Loftus, T.M., Jaworsky, D.E., Frehywot, C.L., Townsend, C.A., Ronnett, G.V., Daniel Lane, M., Kuhajda, F.P., Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors (2000) Science, 288 (5475), pp. 2379-2381. , DOI 10.1126/science.288.5475.2379 Blouet, C., Jo, Y.H., Li, X., Schwartz, G.J., Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit (2009) J Neurosci, 29, pp. 8302-8311 Chau-Van, C., Gamba, M., Salvi, R., Gaillard, R.C., Pralong, F.P., Metformin inhibits adenosine 5′-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons (2007) Endocrinology, 148 (2), pp. 507-511. , http://endo.endojournals.org/cgi/reprint/148/2/507, DOI 10.1210/en.2006-1237 Kim, Y.W., Kim, J.Y., Park, Y.H., Metformin restores leptin sensitivity in high-fat-fed obese rats with leptin resistance (2006) Diabetes, 55, pp. 716-724 Dansinger, M.L., Gleason, J.A., Griffith, J.L., Selker, H.P., Schaefer, E.J., Comparison of the Atkins, Ornish, Weight Watchers, and Zone Diets for weight loss and heart disease risk reduction: A randomized trial (2005) Journal of the American Medical Association, 293 (1), pp. 43-53. , DOI 10.1001/jama.293.1.43 Shigemitsu, K., Tsujishita, Y., Miyake, H., Hidayat, S., Tanaka, N., Hara, K., Yonezawa, K., Structural requirement of leucine for activation of p70 S6 kinase (1999) FEBS Letters, 447 (2-3), pp. 303-306. , DOI 10.1016/S0014-5793(99)00304-X, PII S001457939900304X Tome, D., Schwarz, J., Darcel, N., Protein, amino acids, vagus nerve signaling, and the brain (2009) Am J Clin Nutr, 90, pp. 838S-843S Purpera, M.N., Shen, L., Taghavi, M., Impaired branched chain amino acid metabolism alters feeding behavior and increases orexigenic neuropeptide expression in the hypothalamus (2012) J Endocrinol, 212, pp. 85-94 Catania, C., Binder, E., Cota, D., MTORC1 signaling in energy balance and metabolic disease (2011) Int J Obes (Lond), 35, pp. 751-761 Cota, D., Matter, E.K., Woods, S.C., The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity (2008) J Neurosci, 28, pp. 7202-7208 Xu, G., Kwon, G., Cruz, W.S., Marshall, C.A., McDaniel, M.L., Metabolic regulation by leucine of translation initiation through the mTOR-signaling pathway by pancreatic β-cells (2001) Diabetes, 50 (2), pp. 353-360 Fujita, S., Dreyer, H.C., Drummond, M.J., Glynn, E.L., Cadenas, J.G., Yoshizawa, F., Volpi, E., Rasmussen, B.B., Nutrient signalling in the regulation of human muscle protein synthesis (2007) Journal of Physiology, 582 (2), pp. 813-823. , DOI 10.1113/jphysiol.2007.134593 Wilson, G.J., Layman, D.K., Moulton, C.J., Leucine or carbohydrate supplementation reduces AMPK and eEF2 phosphorylation and extends postprandial muscle protein synthesis in rats (2011) Am J Physiol Endocrinol Metab, 301, pp. 1236-E1242 Du, M., Shen, Q.W., Zhu, M.J., Ford, S.P., Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase (2007) Journal of Animal Science, 85 (4), pp. 919-927. , DOI 10.2527/jas.2006-342 Aftring, R.P., Block, K.P., Buse, M.G., Leucine and isoleucine activate skeletal muscle branched-chain alpha-keto acid dehydrogenase in vivo (1986) Am J Physiol, 250, pp. 599-E604 Mayer, J., Regulation of energy intake and the body weight: The glucostatic theory and the lipostatic hypothesis (1955) Ann N y Acad Sci, 63, pp. 15-43 Anand, B.K., Chhina, G.S., Sharma, K.N., Activity of single neurons in the hypothalamic feeding centers: Effect of glucose (1964) Am J Physiol, 207, pp. 1146-1154 Oomura, Y., Kimura, K., Ooyama, H., Reciprocal activities of the ventromedial and lateral hypothalamic areas of cats (1964) Science, 143, pp. 484-485 Mizuno, Y., Oomura, Y., Glucose responding neurons in the nucleus tractus solitarius of the rat: In vitro study (1984) Brain Research, 307 (1-2), pp. 109-116 Nakano, Y., Oomura, Y., Lenard, L., Feeding-related activity of glucose- and morphine-sensitive neurons in the monkey amygdala (1986) Brain Research, 399 (1), pp. 167-172. , DOI 10.1016/0006-8993(86)90613-X Cha, S.H., Wolfgang, M., Tokutake, Y., Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake (2008) Proc Natl Acad Sci U S A, 105, pp. 16871-16875 Kim, M.-S., Park, J.-Y., Namkoong, C., Jang, P.-G., Ryu, J.-W., Song, H.-S., Yun, J.-Y., Lee, K.-U., Anti-obesity effects of α-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase (2004) Nature Medicine, 10 (7), pp. 727-733. , DOI 10.1038/nm1061 Wolfgang, M.J., Cha, S.H., Sidhaye, A., Regulation of hypothalamic malonyl-CoA by central glucose and leptin (2007) Proc Natl Acad Sci U S A, 104, pp. 19285-19290 Lee, K., Li, B., Xi, X., Suh, Y., Martin, R.J., Role of neuronal energy status in the regulation of adenosine 5′-monophosphate-activated protein kinase, orexigenic neuropeptides expression, and feeding behavior (2005) Endocrinology, 146 (1), pp. 3-10. , DOI 10.1210/en.2004-0968 Cai, F., Gyulkhandanyan, A.V., Wheeler, M.B., Belsham, D.D., Glucose regulates AMP-activated protein kinase activity and gene expression in clonal, hypothalamic neurons expressing proopiomelanocortin: Additive effects of leptin or insulin (2007) Journal of Endocrinology, 192 (3), pp. 605-614. , DOI 10.1677/JOE-06-0080 Zhang, H., Zhang, G., Gonzalez, F.J., Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation (2011) PLoS Biol, 9, p. 1001112 De Souza, C.T., Araujo, E.P., Bordin, S., Ashimine, R., Zollner, R.L., Boschero, A.C., Saad, M.J.A., Velloso, L.A., Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus (2005) Endocrinology, 146 (10), pp. 4192-4199. , http://endo.endojournals.org/cgi/reprint/146/10/4192, DOI 10.1210/en.2004-1520 Zhang, X., Zhang, G., Zhang, H., Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity (2008) Cell, 135, pp. 61-73 Posey, K.A., Clegg, D.J., Printz, R.L., Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet (2009) Am J Physiol Endocrinol Metab, 296, pp. 1003-E1012 Benoit, S.C., Kemp, C.J., Elias, C.F., Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents (2009) J Clin Invest, 119, pp. 2577-2589 Tsukumo, D.M.L., Carvalho-Filho, M.A., Carvalheira, J.B.C., Prada, P.O., Hirabara, S.M., Schenka, A.A., Araujo, E.P., Saad, M.J.A., Loss-of-function mutation in toll-like receptor 4 prevents diet-induced obesity and insulin resistance (2007) Diabetes, 56 (8), pp. 1986-1998. , http://diabetes.diabetesjournals.org/cgi/reprint/56/8/1986, DOI 10.2337/db06-1595 Lumeng, C.N., Saltiel, A.R., Inflammatory links between obesity and metabolic disease (2011) J Clin Invest, 121, pp. 2111-2117 Watts, C., Location, location, location: Identifying the neighborhoods of LPS signaling (2008) Nature Immunology, 9 (4), pp. 343-345. , DOI 10.1038/ni0408-343, PII NI0408-343 Horng, T., Barton, G.M., Medzhitov, R., TIRAP: An adapter molecule in the Toll signaling pathway (2001) Nat Immunol, 2, pp. 835-841 Martin, T.L., Alquier, T., Asakura, K., Furukawa, N., Preitner, F., Kahn, B.B., Diet-induced obesity alters AMP kinase activity in hypothalamus and skeletal muscle (2006) Journal of Biological Chemistry, 281 (28), pp. 18933-18941. , http://www.jbc.org/cgi/reprint/281/28/18933, DOI 10.1074/jbc.M512831200 Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., Rossetti, L., Central administration of oleic acid inhibits glucose production and food intake (2002) Diabetes, 51 (2), pp. 271-275 Jo, Y.H., Su, Y., Gutierrez-Juarez, R., Oleic acid directly regulates POMC neuron excitability in the hypothalamus (2009) J Neurophysiol, 101, pp. 2305-2316 Schwinkendorf, D.R., Tsatsos, N.G., Gosnell, B.A., Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism (2011) Int J Obes (Lond), 35, pp. 336-344 Jia, M., Xue, N., Cao, Z., Effects of dietary different ratios of n-3 to n-6 polyunsaturated fatty acids influence lipid metabolism and appetite of rats (2009) Wei Sheng Yan Jiu, 38, pp. 175-178 Gomez-Pinilla, F., Ying, Z., Differential effects of exercise and dietary docosahexaenoic acid on molecular systems associated with control of allostasis in the hypothalamus and hippocampus (2010) Neuroscience, 168, pp. 130-137 Wallace, R.J., McKain, N., Shingfield, K.J., Devillard, E., Isomers of conjugated linoleic acids are synthesized via different mechanisms in ruminal digesta and bacteria (2007) Journal of Lipid Research, 48 (10), pp. 2247-2254. , http://www.jlr.org/cgi/reprint/48/10/2247, DOI 10.1194/jlr.M700271-JLR200 Pariza, M.W., Park, Y., Cook, M.E., The biologically active isomers of conjugated linoleic acid (2001) Progress in Lipid Research, 40 (4), pp. 283-298. , DOI 10.1016/S0163-7827(01)00008-X, PII S016378270100008X Pariza, M.W., Perspective on the safety and effectiveness of conjugated linoleic acid (2004) Am J Clin Nutr, 79, pp. 1132S-1136S Jiang, S., Wang, Z., Riethoven, J.J., Conjugated linoleic acid activates AMP-activated protein kinase and reduces adiposity more effectively when used with metformin in mice (2009) J Nutr, 139, pp. 2244-2251 Miner, J.L., Cederberg, C.A., Nielsen, M.K., Chen, X., Baile, C.A., Conjugated linoleic acid (CLA), body fat, and apoptosis (2001) Obesity Research, 9 (2), pp. 129-134 Park, Y., Storkson, J.M., Albright, K.J., Liu, W., Pariza, M.W., Evidence that the trans-10,cis-12 isomer of conjugated linoleic acid induces body composition changes in mice (1999) Lipids, 34 (3), pp. 235-241 Cao, Z.-P., Wang, F., Xiang, X.-S., Cao, R., Zhang, W.-B., Gao, S.-B., Intracerebroventricular administration of conjugated linoleic acid (CLA) inhibits food intake by decreasing gene expression of NPY and AgRP (2007) Neuroscience Letters, 418 (3), pp. 217-221. , DOI 10.1016/j.neulet.2007.03.010, PII S0304394007002947 So, M.H., Tse, I.M., Li, E.T., Dietary fat concentration influences the effects of trans-10, cis-12 conjugated linoleic acid on temporal patterns of energy intake and hypothalamic expression of appetite-controlling genes in mice (2009) J Nutr, 139, pp. 145-151 Carreau, J.P., Biosynthesis of lipoic acid via unsaturated fatty acids (1979) Methods Enzymol, 62, pp. 152-158 Reed, L.J., A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes (2001) J Biol Chem, 276, pp. 38329-38336 Liu, J., The effects and mechanisms of mitochondrial nutrient α-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: An overview (2008) Neurochemical Research, 33 (1), pp. 194-203. , DOI 10.1007/s11064-007-9403-0 El Midaoui, A., Elimadi, A., Wu, L., Haddad, P.S., De Champlain, J., Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production (2003) American Journal of Hypertension, 16 (3), pp. 173-179. , DOI 10.1016/S0895-7061(02)03253-3, PII S0895706102032533 Targonsky, E.D., Dai, F., Koshkin, V., Karaman, G.T., Gyulkhandanyan, A.V., Zhang, Y., Chan, C.B., Wheeler, M.B., Lipoic acid regulates AMP-activated protein kinase and inhibits insulin secretion from beta cells (2006) Diabetologia, 49 (7), pp. 1587-1598. , DOI 10.1007/s00125-006-0265-9 Zhang, Y., Han, P., Wu, N., Amelioration of lipid abnormalities by alpha-lipoic acid through antioxidative and anti-inflammatory effects (2011) Obesity (Silver Spring), 19, pp. 1647-1653 Turnley, A.M., Stapleton, D., Mann, R.J., Witters, L.A., Kemp, B.E., Bartlett, P.F., Cellular distribution and developmental expression of AMP-activated protein kinase isoforms in mouse central nervous system (1999) Journal of Neurochemistry, 72 (4), pp. 1707-1716. , DOI 10.1046/j.1471-4159.1999.721707.x Cheng, P.Y., Lee, Y.M., Yen, M.H., Reciprocal effects of alpha-lipoic acid on adenosine monophosphate- activated protein kinase activity in obesity induced by ovariectomy in rats (2011) Menopause, 18, pp. 1010-1017 Zhou, J., Zhou, S., Tang, J., Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats (2009) Eur J Pharmacol, 606, pp. 262-268 Hur, J.M., Hyun, M.S., Lim, S.Y., The combination of berberine and irradiation enhances anti-cancer effects via activation of p38 MAPK pathway and ROS generation in human hepatoma cells (2009) J Cell Biochem, 107, pp. 955-964 Wang, J.M., Yang, Z., Xu, M.G., Berberine-induced decline in circulating CD31 +/CD42- microparticles is associated with improvement of endothelial function in humans (2009) Eur J Pharmacol, 614, pp. 77-83 Wang, X., Wang, R., Xing, D., Su, H., Ding, Y., Du, L., Kinetic difference of berberine between hippocampus and plasma in rat after intravenous administration of Coptidis rhizoma extract (2005) Life Sciences, 77 (24), pp. 3058-3067. , DOI 10.1016/j.lfs.2005.02.033, PII S0024320505005886 Brusq, J.-M., Ancellin, N., Grondin, P., Guillard, R., Martin, S., Saintillan, Y., Issandou, M., Inhibition of lipid synthesis through activation of AMP kinase: An additional mechanism for the hypolipidemic effects of berberine (2006) Journal of Lipid Research, 47 (6), pp. 1281-1288. , http://www.jlr.org/cgi/reprint/47/6/1281, DOI 10.1194/jlr.M600020-JLR200 Yin, J., Gao, Z., Liu, D., Berberine improves glucose metabolism through induction of glycolysis (2008) Am J Physiol Endocrinol Metab, 294, pp. 148-E156 Kim, W.S., Lee, Y.S., Cha, S.H., Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity (2009) Am J Physiol Endocrinol Metab, 296, pp. 812-E819