dc.creatorArrais C.A.G.
dc.creatorde Oliveira M.T.
dc.creatorMettenburg D.
dc.creatorRueggeberg F.A.
dc.creatorGiannini M.
dc.date2013
dc.date2015-06-25T19:09:58Z
dc.date2015-11-26T14:56:54Z
dc.date2015-06-25T19:09:58Z
dc.date2015-11-26T14:56:54Z
dc.date.accessioned2018-03-28T22:08:50Z
dc.date.available2018-03-28T22:08:50Z
dc.identifier
dc.identifierBrazilian Oral Research. , v. 27, n. 2, p. 97 - 102, 2013.
dc.identifier18068324
dc.identifier10.1590/S1806-83242013005000001
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84878743408&partnerID=40&md5=9ebee865343d0f615487ff7c1b5aa30d
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88409
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88409
dc.identifier2-s2.0-84878743408
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255552
dc.descriptionThis study compared the volumetric shrinkage (VS), flexural strength (FS) and flexural modulus (FM) properties of the low-shrinkage resin composite Aelite LS (Bisco) to those of Filtek LS (3M ESPE) and two regular dimethacrylate-based resin composites, the microfilled Heliomolar (Ivoclar Vivadent) and the microhybrid Aelite Universal (Bisco). The composites (n = 5) were placed on the Teflon pedestal of a videoimaging device, and VS was recorded every minute for 5 min after 40 s of light exposure. For the FS and FM tests, resin discs (0.6 mm in thickness and 6.0 mm in diameter) were obtained (n = 12) and submitted to a piston-ring biaxial test in a universal testing machine. VS, FS, and FM data were submitted to two-way repeated measures and one-way ANOVA, respectively, followed by Tukey's post-hoc test (α= 5%). Filtek LS showed lower VS than did Aelite LS, which in turn showed lower shrinkage than did the other composites. Aelite Universal and Filtek LS exhibited higher FS than did Heliomolar and Aelite LS, both of which exhibited the highest FM. No significant difference in FM was noted between Filtek LS and Aelite Universal, while Heliomolar exhibited the lowest values. Aelite LS was not as effective as Filtek LS regarding shrinkage, although both lowshrinkage composites showed lower VS than did the other composites. Only Filtek LS exhibited FS and FM comparable to those of the regular microhybrid dimethacrylate-based resin composite.
dc.description27
dc.description2
dc.description97
dc.description102
dc.descriptionFerracane, J.L., Resin-based composite performance: are there some things we can't predict? (2013) Dent Mater., 29 (1), pp. 51-58. , Jan
dc.descriptionPeutzfeldt, A., Resin composites in dentistry: the monomer systems (1997) Eur J Oral Sci., 105 (2), pp. 97-116. , Apr
dc.descriptionNaoum, S.J., Ellakwa, A., Morgan, L., White, K., Martin, F.E., Lee, I.B., Polymerization profile analysis of resin composite dental restorative materials in real time (2012) J Dent., 40 (1), pp. 64-70. , Jan
dc.descriptionLee, I.B., Cho, B.H., Son, H.H., Um, C.M., A new method to measure the polymerization shrinkage kinetics of light cured composites (2005) J Oral Rehabil., 32 (4), pp. 304-314. , Apr
dc.descriptionFeilzer, A.J., De Gee, A.J., Davidson, C.L., Quantitative determination of stress reduction by flow in composite restorations (1990) Dent Mater., 6 (3), pp. 167-171. , Jul
dc.descriptionBoaro, L.C., Goncalves, F., Braga, R.R., Influence of the bonding substrate in dental composite polymerization stress testing (2010) Acta Biomater., 6 (2), pp. 547-551. , Feb
dc.descriptionLee, M.R., Cho, B.H., Son, H.H., Um, C.M., Lee, I.B., Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration (2007) Dent Mater., 23 (3), pp. 288-295. , Mar
dc.descriptionPalin, W.M., Fleming, G.J., Nathwani, H., Burke, F.J., Randall, R.C., In vitro cuspal deflection and microleakage of maxillary premolars restored with novel low-shrink dental composites (2005) Dent Mater., 21 (4), pp. 324-335. , Apr
dc.descriptionGaengler, P., Hoyer, I., Montag, R., Gaebler, P., Micromorphological evaluation of posterior composite restorations-a 10-year report (2004) J Oral Rehabil., 31 (10), pp. 991-1000. , Oct
dc.descriptionFerracane, J.L., Resin composite--state of the art (2011) Dent Mater., 27 (1), pp. 29-38. , Jan
dc.descriptionSilikas, N., Eliades, G., Watts, D.C., Light intensity effects on resin-composite degree of conversion and shrinkage strain (2000) Dent Mater., 16 (4), pp. 292-296. , Jul
dc.descriptionKanca, J., Suh, B.I., Pulse activation: reducing resin-based composite contraction stresses at the enamel cavosurface margins (1999) Am J Dent., 12 (3), pp. 107-112. , Jun
dc.descriptionYap, A.U., Soh, M.S., Post-gel polymerization contraction of "low shrinkage" composite restoratives (2004) Oper Dent., 29 (2), pp. 182-187. , Mar-Apr
dc.descriptionWeinmann, W., Thalacker, C., Guggenberger, R., Siloranes in dental composites (2005) Dent Mater., 21 (1), pp. 68-74. , Jan
dc.descriptionMoraes, R.R., Garcia, J.W., Barros, M.D., Lewis, S.H., Pfeifer, C.S., Liu, J., Control of polymerization shrinkage and stress in nanogel-modified monomer and composite materials (2011) Dent Mater., 27 (6), pp. 509-519. , Jun
dc.descriptionKleverlaan, C.J., Feilzer, A.J., Polymerization shrinkage and contraction stress of dental resin composites (2005) Dent Mater., 21 (12), pp. 1150-1157. , Dec
dc.descriptionBoaro, L.C., Goncalves, F., Guimaraes, T.C., Ferracane, J.L., Versluis, A., Braga, R.R., Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites (2010) Dent Mater., 26 (12), pp. 1144-1150. , Dec
dc.descriptionPapadogiannis, D., Tolidis, K., Lakes, R., Papadogiannis, Y., Viscoelastic properties of low-shrinking composite resins compared to packable composite resins (2011) Dent Mater J., 30 (3), pp. 350-357
dc.descriptionLeprince, J., Palin, W.M., Mullier, T., Devaux, J., Vreven, J., Leloup, G., Investigating filler morphology and mechanical properties of new low-shrinkage resin composite types (2010) J Oral Rehabil., 37 (5), pp. 364-376. , May 1
dc.descriptionSarrett, D.C., Clinical challenges and the relevance of materials testing for posterior composite restorations (2005) Dent Mater., 21 (1), pp. 9-20. , Jan
dc.descriptionIlie, N., Hickel, R., Investigations on mechanical behaviour of dental composites (2009) Clin Oral Investig., 13 (4), pp. 427-438. , Dec
dc.descriptionHtang, A., Ohsawa, M., Matsumoto, H., Fatigue resistance of composite restorations: effect of filler content (1995) Dent Mater., 11 (1), pp. 7-13. , Jan
dc.descriptionSoderholm, K.J., Influence of silane treatment and filler fraction on thermal expansion of composite resins (1984) J Dent Res., 63 (11), pp. 1321-1326. , Nov
dc.descriptionLloyd, C.H., Iannetta, R.V., The fracture toughness of dental composites.I. The development of strength and fracture toughness (1982) J Oral Rehabil, 9 (1), pp. 55-66. , Jan
dc.descriptionCross, M., Douglas, W.H., Fields, R.P., The relationship between filler loading and particle size distribution in composite resin technology (1983) J Dent Res., 62 (7), pp. 850-852. , Jul
dc.descriptionMasouras, K., Silikas, N., Watts, D.C., Correlation of filler content and elastic properties of resin-composites (2008) Dent Mater., 24 (7), pp. 932-939. , Jul
dc.descriptionLien, W., Vandewalle, K.S., Physical properties of a new siloranebased restorative system (2010) Dent Mater., 26 (4), pp. 337-344. , Apr
dc.descriptionRueggeberg, F.A., Caughman, W.F., The influence of light exposure on polymerization of dual-cure resin cements (1993) Oper Dent., 18 (2), pp. 48-55. , Mar-Apr
dc.languageen
dc.publisher
dc.relationBrazilian Oral Research
dc.rightsaberto
dc.sourceScopus
dc.titleSilorane-and High Filled-based "lowshrinkage" Resin Composites: Shrinkage, Flexural Strength And Modulus
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución