dc.creatorSeabra A.B.
dc.creatorHaddad P.
dc.creatorDuran N.
dc.date2013
dc.date2015-06-25T19:09:52Z
dc.date2015-11-26T14:56:54Z
dc.date2015-06-25T19:09:52Z
dc.date2015-11-26T14:56:54Z
dc.date.accessioned2018-03-28T22:08:49Z
dc.date.available2018-03-28T22:08:49Z
dc.identifier
dc.identifierIet Nanobiotechnology. , v. 7, n. 3, p. 90 - 99, 2013.
dc.identifier17518741
dc.identifier10.1049/iet-nbt.2012.0047
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84881011279&partnerID=40&md5=fe193b5adeefe21a329b5d45b28eaf19
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/88386
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88386
dc.identifier2-s2.0-84881011279
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255551
dc.description'Green nanotechnology' has attracted increasing attention in recent years because of the possibility to reduce and/or eliminate toxic substances. Indeed, biogenic syntheses of nanomaterials, such as nanoparticles (NPs), are considered economic and valuable alternatives for the production of metallic NPs for diverse applications. Recent studies have revealed that the development of eco-friendly technologies in material science is under extensive investigation in the field of nanobiotechnology. Considering this scenario, this review highlights the recent advances in the biogenic syntheses of metallic iron, iron sulphides and iron oxide NPs for a wide range of applications. Moreover, this review also discusses the medical, environmental and technological applications of biogenically synthesised NPs, and the challenges to be faced to optimise the eco-friendly production of these important nanomaterials. © The Institution of Engineering and Technology 2013.
dc.description7
dc.description3
dc.description90
dc.description99
dc.descriptionZhang, X., Yan, S., Tyagu, R.D., Surampalli, R.Y., Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates (2011) Chemosphere, 82, pp. 489-494
dc.descriptionSeabra, A.B., Duran, N., Nanotechnology allied to nitric oxide release materials for dermatological applications (2012) Curr. Nanosci., 8, pp. 520-525
dc.descriptionDuran, N., Lemes, A.P., Seabra, A.B., Review of cellulose nanocrystals patentes: Preparation, composites and general applications (2012) Recent Patents Nanotechnol., 6, pp. 16-28
dc.descriptionSeabra, A.B., Duran, N., Nitric oxide-releasing vehicles for biomedical applications (2010) J. Mater. Chem., 20, pp. 1624-1637
dc.descriptionDe Lima, R., Seabra, A.B., Duran, N., Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles (2012) J. Appl. Toxicol., 32, pp. 867-879
dc.descriptionDurán, N., Seabra, A.B., Metallic oxide nanoparticles: State of the art in biogenic syntheses and their mechanisms (2012) Appl. Microbiol. Biotechnol., 95, pp. 275-288
dc.descriptionDurán, N., Seabra, A.B., Microbial syntheses of metallic sulfide nanoparticles: An overview (2012) Curr. Biotechnol., 1, pp. 287-296
dc.descriptionLi, X., Xu, H., Chen, Z.S., Biosynthesis of nanoparticles by microorganisms and their applications (2011) J. Nanomater., p. 2011. , Art. ID 270974, doi:10.1155/2011/270974
dc.descriptionXu, P., Zeng, G.M., Huang, D.L., Use of iron oxide nanomaterials in wastewater treatment: A review (2012) Sci. Total Environ., 424, pp. 1-10
dc.descriptionHaddad, P.S., Seabra, A.B., Biomedical applications of magnetic nanoparticles (2012) Iron Oxides: Structure, Properties and Applications, 1, pp. 165-188. , Nadya Gotsiridze-Columbus (Org.) Nova Science Publishers, Inc., Nova York, 1st edn
dc.descriptionMarchiol, L., Synthesis of metal nanoparticles in living (2012) Ital. J. Agron., 7, pp. 274-282
dc.descriptionBryne, J.M., Telling, N.D., Coker, V.S., Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by geobacter sulfurreducens (2011) Nanotechnology, p. 22. , doi: 10.1088/0957-4484/22/45/455709
dc.descriptionNarayanan, K.B., Sakthivel, N., Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents (2011) Adv. Colloid Interf. Sci., 169, pp. 59-79
dc.descriptionXie, J., Chen, K., Chen, X., Production, modification and bio-Applications of magnetic nanoparticles gestated by magnetotactic bacteria (2009) Nano Res., 2, pp. 261-278
dc.descriptionRai, M., Durán, N., (2011) Metal Nanoparticles in Microbiology, , Springer-Verlag, Germany, 1st edn
dc.descriptionBhargava, A., Jain, N., Panwar, J., Synthesis and application of magnetic nanoparticles: A biological perspective (2011) Current Topics in Biotechnology and Microbiology, pp. 117-155. , in Dhingra, H.K., Jha, P.N., Bajpai, P. (Eds)' (Lambert Academic Publication AG & CO, Dudweller Landstr, Germany, Chapter 6
dc.descriptionDurán, N., Marcato, P.D., Durán, M., Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi and plants (2011) Appl. Microbiol. Biotechnol., 90, pp. 1609-1624
dc.descriptionKrumov, N., Perner-Nochta, I., Oder, S., Production of inorganic nanoparticles by microorganisms (2009) Chem. Eng. Technol., 32, pp. 1026-1035
dc.descriptionHerrera-Becerra, R., Rius, J.L., Zorrilla, C., Tannin biosynthesis of iron oxide nanoparticles (2010) Appl. Phys. A, 100, pp. 453-459
dc.descriptionMueller, N.C., Braun, J., Bruns, J., Application of nanoscale zero valent iron (nzvi) for groundwater remediation in europe (2012) Environ. Sci. Pollut. Res., 19, pp. 550-558
dc.descriptionLi, L., Fan, M., Brown, R.C., Synthesis, properties, and environmental applications of nanoscale iron-based materials: A review (2006) Crit. Rev. Environ. Sci. Technol., 36, pp. 405-431
dc.descriptionWatson, J.H.P., Ellwood, D.C., Duggleby, C.J., A chemostat with magnetic feedback for the growth of sulphate reducing bacteria and its application to the removal and recovery of heavy metals from solution (1996) Minerals Engineering, 9 (9), pp. 973-983. , DOI 10.1016/0892-6875(96)00088-X, PII S089268759600088X
dc.descriptionRoberts, A.P., Magnetic properties of sedimentary greigite (Fe3S4) (1995) Earth & Planetary Science Letters, 134 (3-4), pp. 227-236
dc.descriptionArmijo, L.M., Brandt, Y.I., Mathew, D., Iron oxide nanocrystals for magnetic hyperthermia applications (2012) Nanomater., 2, pp. 134-146
dc.descriptionHoag, G.E., Collins, J.B., Holcomb, J.L., Degradation of bromothymol blue by 'greener' nano-scale zero-valent iron synthesized using tea polyphenols (2009) J. Mater. Chem., 19, pp. 8671-8677
dc.descriptionNadagouda, M.N., Castle, A.B., Murdock, R.C., In vitro biocompatibility of nanoscale zerovalent iron particles (nzvi) synthesized using tea polyphenols (2010) Green Chem., 12, pp. 114-122
dc.descriptionPinto, S.L., Machado, S., Ribeiro, M.C., Green synthesis of zero-valent iron nanoparticles using vine leaves (2012) IJUP'12-Fifth Meeting of Young Researchers of University of Porto, 12, p. 489
dc.descriptionShahwan, T., Abu Sirriah, S., Nairat, M., Green synthesis of iron nanoparticles and their application as a fenton-like catalyst for the degradation of aqueous cationic and anionic dyes (2011) Chem. Eng. J., 172, pp. 258-266
dc.descriptionKupka, D., Lovás, M., Sepelák, V., Deferrization of kaolinic sand by iron oxidizing and iron reducing bacteria (2007) Adv. Mater. Res., 20-21, pp. 130-133
dc.descriptionLi, N., Jin, Z.H., Li, T.L., Effect of biofilm on nanoscale zero-valent iron-microorganism removing no3-n in groundwater (2011) Environ. Sci., 32 (6), pp. 1620-1626
dc.descriptionFarina, M.D., Esquivel, M.S., Lins De Barros, H.G.P., Magnetic iron-sulfur crystals from a magnetotactic microorganism (1990) Nature, 343, pp. 256-258
dc.descriptionMann, S., Sparks, N.H.C., Frankel, R.B., Biomineralization of ferromagnetic greigite (fe3s4) and iron pyrite (fes2) in a magnetotactic bacterium (1990) Nature, 343, pp. 258-261
dc.descriptionMarius, M.S., James, P.A.B., Bahaj, A.S., Smallman, D.J., Development of a highly magnetic iron sulphide for metal uptake and magnetic separation (2005) Journal of Magnetism and Magnetic Materials, 293 (1), pp. 567-571. , DOI 10.1016/j.jmmm.2005.01.074, PII S0304885305001356
dc.descriptionWatson, J.H.P., Ellwood, D.C., Soper, A.K., Nanosized strongly-magnetic bacterially-produced iron sulfide materials (1999) J. Magn. Magn. Mater., 203, pp. 69-72
dc.descriptionBazylinski, D.A., Frankel, R.B., Garratt-Reed, A.J., Biomineralization of iron sulfide in magnetotactic bacteria from sulfidic environments (1990) Iron Biominerals, pp. 239-255. , in Frankel, R.B., Blackmore, R.P. (Eds.) Plennum Press, New York
dc.descriptionBazylinski, D.A., Frankel, R.B., Biologically controlled mineralization of magnetic iron minerals by magnetotactic bacteria (2000) Environmental Microbe-Metal Interactions, pp. 109-149. , in Lovley, D.R. (Ed) ASM Press, Washington D.C
dc.descriptionBharde, A., (2011) Bacterial Synthesis of Metal Sulfide Nanoparticles'., , PhD thesis, University of Pune, India
dc.descriptionBazylinski, D.A., Frankel, R.B., Heywood, B.R., Controlled biomineralization of magnetite (fe3o4) and greigite (fe3s4) in a magnetotactic bacterium (1995) Appl. Environ. Microbiol., 61, pp. 3232-3239
dc.descriptionBharde, A., Parikh, R.Y., Baidakova, M., Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles (2008) Langmuir, 24, pp. 5787-5794
dc.descriptionLefevre, C.T., Abreu, F., Lins, U., Bazylinski, D.A., Nonmagnetotactic multicelular prokaryotes from low-saline, nonmarine aquatic environments and their unusual negative phototactic behavior (2010) Appl. Environ. Microbiol., 76, pp. 3220-3227
dc.descriptionGramp, J.P., Wang, H., Bigham, J.M., Biogenic synthesis and reduction of fe(iii)-hydroxysulfates (2009) Geomicrobiol., 26, pp. 275-280
dc.descriptionPaknikar, K.M., Nagpal, V., Pethkar, A.V., Rajwade, J.M., Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers (2005) Science and Technology of Advanced Materials, 6 (3-4 SPEC. ISS.), pp. 370-374. , DOI 10.1016/j.stam.2005.02.016, PII S1468699605000707
dc.descriptionPascu, O., Carenza, E., Gich, M., Surface reactivity of iron oxide nanoparticles by microwave-Assisted synthesis
dc.descriptioncomparison with the thermal decomposition route (2012) J. Phys. Chem., 116, pp. 15108-15116
dc.descriptionHaddad, P.S., Martins, T.M., D'Souza-Li, L., Li, L.M., Metze, K., Adam, R.L., Knobel, M., Zanchet, D., Structural and morphological investigation of magnetic nanoparticles based on iron oxides for biomedical applications (2008) Materials Science and Engineering C, 28 (4), pp. 489-494. , DOI 10.1016/j.msec.2007.04.014, PII S0928493107000677
dc.descriptionJayapaul, J., Arns, S., Lederle, W., Mri assessment of hepatic iron clearance rates after uspio administration in healthy adults (2012) Invest. Radio., 47, pp. 717-724
dc.descriptionWei, H., Xialoei, W., Study on the properties and stability of ionic liquid-based ferrofluids (2012) Colloid Polym. Sci., 290, pp. 1695-1702
dc.descriptionYokoyama, M., Flux characteristics of cell culture medium in rectangular microchannels (2011) J. Artif. Organs., 8, pp. 238-244
dc.descriptionMolina, M.M., Seabra, A.B., De Oliveira, M.G., Nitric oxide donor superparamagnetic iron oxide nanoparticles (2013) Mater. Sci. Eng. C, 33, pp. 746-751
dc.descriptionHaddad, P.S., Duarte, E.L., Baptista, M.S., Goya, G.F., Leite, C.A.P., Itri, R., Synthesis and characterization of silica-coated magnetic nanoparticles (2004) Progress in Colloid and Polymer Science, 128, pp. 232-238. , DOI 10.1007/b97092
dc.descriptionLee, Y., Lee, J., Bae, C.J., Park, J.-G., Noh, H.-J., Park, J.-H., Hyeon, T., Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions (2005) Advanced Functional Materials, 15 (3), pp. 503-509. , DOI 10.1002/adfm.200400187
dc.descriptionHaddad, P.S., Rocha, T.R., Souza, E.R., Interplay between crystallization and particle growth during the isothermal annealing of colloidal iron oxide nanoparticles (2009) J. Colloid Interface Sci., 339, pp. 344-350
dc.descriptionTalebi, S., Ramezani, F., Ramezani, M., (2010) Biosynthesis of Metal Nanoparticles by Microorganisms, , Nanocon, Olomouc, Czech Republic, EU, 12-14 October
dc.descriptionAbhilash, P.B.D., Microbial synthesis of iron-based nanomaterials-A review (2011) Bull. Mater. Sci., 34, pp. 191-198
dc.descriptionLin, M.M., Kim, H.H., Kim, H., Iron oxide-based nanomagnets in nanomedicine: Fabrication and applications (2010) Nano Rev., 1, pp. 4883-4900
dc.descriptionJung, H., Park, H., Kim, J., Lee, J.-H., Hur, H.-G., Myung, N.V., Choi, H., Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation (2007) Environmental Science and Technology, 41 (13), pp. 4741-4747. , DOI 10.1021/es0702768
dc.descriptionLee, J.-H., Roh, Y., Kim, K.W., Organic acid-dependent iron mineral formation by a newly isolated iron reducing bacterium, shewanella sp. Hn-41 (2007) Geomicrobiol. J., 24, pp. 31-34
dc.descriptionCeci, P., Chiancone, E., Kasyutich, O., Synthesis of iron oxide nanoparticles in listeria innocua dps (dna-binding protein from starved cells): A study with the wild-Type protein and a catalytic centre mutant (2010) Chem. Eur. J., 16, pp. 709-717
dc.descriptionYaaghoobi, M., Emtiazi, G., Roghanian, R., A novel approach for aerobic construction of iron oxide nanoparticles by acinetobacter radioresistens and their effects on red blood cells (2012) Curr. Nanosci., 8, pp. 286-291
dc.descriptionRaikher, Y.L., Stepanov, V.I., Stolyar, S.V., Magnetic properties of biomineral nanoparticles produced by bacteria klebsiella oxytoca', phys (2010) Solid State, 52, pp. 298-305
dc.descriptionStolyar, S.V., Bayukov, O.A., Gurevich, Y.L., Iron-containing nanoparticles from microbial metabolism (2006) Inorg. Mater., 42, pp. 763-768
dc.descriptionBalasoiu, M., Stolyar, S.V., Iskhakov, R.S., Hierarchical structure investigations of biogenic ferrihydrite samples (2010) Rom. J. Phys., 55, pp. 782-789
dc.descriptionBharde, A., Wani, A., Shouche, Y., Joy, P.A., Prasad, B.L.V., Sastry, M., Bacterial aerobic synthesis of nanocrystalline magnetite (2005) Journal of the American Chemical Society, 127 (26), pp. 9326-9327. , DOI 10.1021/ja0508469
dc.descriptionFrankel, R.B., Papaefthymiou, C., Blakemore, R.P., Fe3o4 precipitation in magnetotactic bacteria (1983) Biochim. Biophys. Acta, 763, pp. 147-159
dc.descriptionNoguchi, Y., Fujiwara, T., Yoshimatsu, K., Fukumori, Y., Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum (1999) Journal of Bacteriology, 181 (7), pp. 2142-2147
dc.descriptionBazylinski, D.A., Frankel, R.B., Konhauser, K.O., Modes of biomineralization of magnetite by microbes (2007) Geomicrobiol. J., 24, pp. 456-475
dc.descriptionJung, H., Kim, J.W., Choi, H., Synthesis of nanosized biogenic magnetite and comparison of its catalytic activity in ozonation (2008) Appl. Catal. B, 83, pp. 208-213
dc.descriptionBharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S.M., Sanyal, M., Sastry, M., Extracellular biosynthesis of magnetite using fungi (2006) Small, 2 (1), pp. 135-141. , DOI 10.1002/smll.200500180
dc.descriptionAndjelkovic, M., Van Camp, J., De Meulenaer, B., Iron-chelation properties of phenolic acids bearing catechol and galloyl groups (2006) Food Chem., 98, pp. 23-31
dc.descriptionFan, T.X., Chow, S.K., Zhang, D., Biomorphic mineralization: From biology to materials (2009) Prog. Mater. Sci., 54, pp. 542-659
dc.descriptionXiang, L., Wei, J., Jianbo, S., Guili, W., Feng, G., Ying, L., Purified and sterilized magnetosomes from Magnetospirillum gryphiswaldense MSR-1 were not toxic to mouse fibroblasts in vitro (2007) Letters in Applied Microbiology, 45 (1), pp. 75-81. , DOI 10.1111/j.1472-765X.2007.02143.x
dc.descriptionMeng, C., Tian, J., Li, Y., Influence of native bacterial magnetic particles on mouse immune response (2010) Wei Sheng Wu Xue Bao, 50, pp. 817-821
dc.descriptionSun, J.B., Wang, Z.L., Duan, J.H., Targeted distribution of bacterial magnetosomes isolated from magnetospirillum gryphiswaldense msr-1 in healthy sprague-dawley rats (2009) J. Nanosci. Nanotechnol., 9, pp. 1881-1885
dc.descriptionSun, J.B., Duan, J.H., Dai, S.L., In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (dbms) on h22 cells: The magnetic bionanoparticles as drug carriers (2007) Cancer Lett., 258, pp. 109-117
dc.descriptionFelfoul, O., Mohammadi, M., Martel, S., Magnetic resonance imaging of fe3o4 nanoparticles embedded in living magnetotactic bacteria for potential use as carriers for in vivo applications (2007) Proc. 29th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society (EMBS '07, pp. 1463-1466
dc.descriptionXiang, L., Bin, W., Huali, J., Wei, J., Jiesheng, T., Feng, G., Ying, L., Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system (2007) Journal of Gene Medicine, 9 (8), pp. 679-690. , DOI 10.1002/jgm.1068
dc.descriptionLang, C., Schuler, D., Biogenic nanoparticles: Production, characterization, and application of bacterial magnetosomes (2006) Journal of Physics Condensed Matter, 18 (38), pp. S2815-S2828. , DOI 10.1088/0953-8984/18/38/S19, PII S0953898406299697, S19
dc.descriptionNaresh, M., Das, S., Mishra, P., Mittal, A., The chemical formula of a magnetotactic bacterium (2012) Biotechnol. Bioeng., 109, pp. 1205-1216
dc.descriptionYan, L., Zhang, S., Chen, P., Liu, H., Yin, H., Li, H., Magnetotactic bacteria, magnetosomes and their application (2012) Microbiol. Res., 167, pp. 507-519
dc.descriptionSchultheiss, D., Schuler, D., Development of a genetic system for Magnetospirillum gryphiswaldense (2003) Archives of Microbiology, 179 (2), pp. 89-94
dc.descriptionNaresh, M., Hasija, V., Sharma, M., Synthesis of cellular organelles containing nano-magnets stunts growth of magnetotactic bacteria (2010) J. Nanosci. Nanotechnol., 10, pp. 4135-4144
dc.descriptionYang, L., Guo, L., Fang, G., Large-scale production of magnetosomes by chemostat culture of magnetospirillum gryphiswaldense at high cell density (2010) Microb. Cell Fact., 9, pp. 99-106
dc.descriptionJermy, A., Bacterial physiology: Environment shapes magnetic personality (2012) Nature Rev. Microbiol., 10, p. 84
dc.descriptionLee, C., Jee, Y.K., Won, I.L., Nelson, K.L., Yoon, J., Sedlak, D.L., Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli (2008) Environmental Science and Technology, 42 (13), pp. 4927-4933. , DOI 10.1021/es800408u
dc.descriptionPark, H., Inactivation of pseudomonas aeruginosa pa01 biofilms by hyperthermia using superparamagnetic nanoparticles (2011) J. Microbiol. Methods, 84, pp. 41-45
dc.descriptionMahmoudi, M., Serpooshan, V., Silver-coated engineered magnetic nanoparticles are promising for the success in the fight against antibacterial resistance threat (2012) ACS Nano, 6, pp. 2656-2664
dc.descriptionSubbiahdoss, G., Magnetic targeting of surface-modified superparamagnetic iron oxide nanoparticles yields antibacterial efficacy against biofilms of gentamicin-resistant staphylococci (2012) Acta Biomater., 8, pp. 2047-2055
dc.descriptionKhan, A.U., Medicine at nanoscale: A new horizon (2012) Int. J. Nanomed., 7, pp. 2997-2998
dc.descriptionTaylor, E., Thomas, J., Webster, T.J., Reducing infections through nanotechnology and nanoparticles (2011) Int. J. Nanomed., 6, pp. 1463-1473
dc.descriptionOh, J., Feldman, M.D., Kim, J., Condit, C., Emelianov, S., Milner, T.E., Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound (2006) Nanotechnology, 17 (16), pp. 4183-4190. , DOI 10.1088/0957-4484/17/16/031, PII S0957448406249924, 031
dc.descriptionHolmes, J.D., Smith, P.R., Evans-Gowing, R., Energy-dispersive x-ray analysis of the extracellular cadmium sulfide crystallites of klebsiella aerogenes (1995) Arch. Microbiol., 163, pp. 143-147
dc.descriptionSastry, M., Ahmad, A., Islam Khan, M., Kumar, R., Biosynthesis of metal nanoparticles using fungi and actinomycete (2003) Current Science, 85 (2), pp. 162-170
dc.descriptionAhmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., Sastry, M., Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum (2003) Colloids and Surfaces B: Biointerfaces, 28 (4), pp. 313-318. , DOI 10.1016/S0927-7765(02)00174-1, PII S0927776502001741
dc.descriptionGericke, M., Pinches, A., Biological synthesis of metal nanoparticles (2006) Hydrometallurgy, 83 (1-4), pp. 132-140. , DOI 10.1016/j.hydromet.2006.03.019, PII S0304386X0600082X
dc.descriptionIravani, S., Green synthesis of metal nanoparticles using plants (2011) Green Chem., 13, pp. 2638-2650
dc.descriptionCai, Y., Shen, Y., Xie, A., Green synthesis of soya beans prouts-mediated superparamagnetic fe 3o4 nanoparticles (2010) J. Magn. Magn. Mater., 322, pp. 2938-2943
dc.descriptionBrayner, R., Coradin, T., Beaunier, P., Intracellular biosynthesis of superparamagnetic 2-lines ferri-hydrite nanoparticles using euglena gracilis microalgae (2012) Colloids Surf. B, 93, pp. 20-23
dc.descriptionHerrera-Becerra, R., Zorrilla, C., Rius, J.L., Electron microscopy characterization of biosynthesized iron oxide nanoparticles (2008) Appl. Phys. A, 91, pp. 241-246
dc.languageen
dc.publisher
dc.relationIET Nanobiotechnology
dc.rightsfechado
dc.sourceScopus
dc.titleBiogenic Synthesis Of Nanostructured Iron Compounds: Applications And Perspectives
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución