dc.creatorVitor G.B.
dc.creatorVictorino A.C.
dc.creatorFerreira J.V.
dc.date2014
dc.date2015-06-25T18:00:34Z
dc.date2015-11-26T14:56:21Z
dc.date2015-06-25T18:00:34Z
dc.date2015-11-26T14:56:21Z
dc.date.accessioned2018-03-28T22:08:23Z
dc.date.available2018-03-28T22:08:23Z
dc.identifier9781479936380
dc.identifierIeee Intelligent Vehicles Symposium, Proceedings. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. 19 - 24, 2014.
dc.identifier
dc.identifier10.1109/IVS.2014.6856616
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84905383045&partnerID=40&md5=8efebe5cb04bca7d1a09cee1e88467d1
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/87417
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87417
dc.identifier2-s2.0-84905383045
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255455
dc.descriptionThe navigation of an autonomous vehicle is a highly complex task and the dynamic environment is used as a source for reasoning. Road detection is a major issue in autonomous systems and advanced driving assistance systems applied for inner-city. Uncertainty may arise in environments with unmarked or weakly marked roads or poor lightning conditions. Moreover, when a common benchmark is not used, it is hard to decide which approach performs better on the road detection problem. This paper introduces a comprehensive performance analysis of two road recognition approaches using the urban Kitti-road benchmark. The first approach makes the extraction of a feature set based on statistical measures of 2D and 3D information from each superpixel. An Artificial Neural Network is used to detect the road pattern. The second approach extracts the feature set based on a multi-normalized histogram of Textons and Disptons for each superpixel. This feature set is used as a source for a Joint Boosting algorithm to model the road pattern. The proposed work presents a detailed evaluation highliting the pros and cons of each approach. © 2014 IEEE.
dc.description
dc.description
dc.description19
dc.description24
dc.descriptionIEEE Intelligent Transportation Systems Society (ITSS)
dc.descriptionKarasev, P., Serrano, M., Vela, P., Tannenbaum, A., Depth invariant visual servoing (2011) Decision and Control and European Control Conference (CDC-ECC), pp. 4992-4998
dc.descriptionRawashdeh, N., Jasim, H., Mult-sensor input path planning for an autonomous ground vehicle (2013) Mechatronics and Its Applications (ISMA), pp. 1-6
dc.descriptionKhnl, T., Kummert, F., Fritsch, J., Monocular road segmentation using slow feature analysis (2011) Intelligent Vehicles Symposium, pp. 800-806. , IEEE
dc.descriptionTan, C., Hong, T., Chang, T., Shneier, M., Color model-based real-time learning for road following (2006) IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 939-944. , 1706865, Proceedings of ITSC 2006: 2006 IEEE Intelligent Transportation Systems Conference
dc.descriptionAlvarez, J., Gevers, T., Lopez, A., Learning photometric invariance from diversified color model ensembles (2009) Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pp. 565-572
dc.descriptionAlvarez, J., Lopez, A., Road detection based on illuminant invariance (2011) Intelligent Transportation Systems, IEEE Transactions on, 12 (1), pp. 184-193
dc.descriptionRasmussen, C., Grouping dominant orientations for ill-structured road following (2004) Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, 1, pp. I470-I477. , Vol.1
dc.descriptionKong, H., Audibert, J.-Y., Ponce, J., General road detection from a single image (2010) Image Processing, IEEE Transactions on, 19 (8), pp. 2211-2220
dc.descriptionSoquet, N., Aubert, D., Hautiere, N., Road segmentation supervised by an extended v-disparity algorithm for autonomous navigation (2007) Proceedings of the IEEE Symposium on Intelligent Vehicles, pp. 160-165
dc.descriptionSturgess, P., Alahari, K., Ladicky, L., Torr, P.H.S., (2009) Combining Appearance and Structure from Motion Features for Road Scene Understanding, , BMVC. British Machine Vision Association
dc.descriptionVitor, G.B., Lima, D.A., Victorino, A.C., Ferreira, J.V., A 2d/3d vision based approach applied to road detection in urban environments (2013) Intelligent Vehicles Symposium (IV), 2013 IEEE, pp. 952-957
dc.descriptionFritsch, J., Kuehnl, T., Geiger, A., A new performance measure and evaluation benchmark for road detection algorithms (2013) International Conference on Intelligent Transportation Systems (ITSC)
dc.descriptionDougherty, E.R., Lotufo, R.A., (2003) Hands-on Morphological Image Processing (SPIE Tutorial Texts in Optical Engineering), TT59. , SPIE Publications, July
dc.descriptionLima, D.A., Vitor, G.B., Victorino, A.C., Ferreira, J.V., A disparity map refinement to enhance weakly-textured urban environment data (2013) International Conference on Advanced Robotics (ICAR), 2013 IEEE
dc.descriptionFaugeras, O., (1993) Three-dimensional Computer Vision: A Geometric View Point, , Cambridge: MIT Press
dc.descriptionLabayrade, R., Aubert, D., Tarel, J.P., Real time obstacle detection in stereovision on non flat road geometry through "v-disparity" representation (2002) Proceedings of the IEEE Symposium on Intelligent Vehicles, 2, pp. 646-651
dc.descriptionShinzato, P.Y., Wolf, D.F., A road following approach using artificial neural networks combinations (2011) J. Intell. Robotics Syst., 62 (3-4), pp. 527-546. , http://dx.doi.org/10.1007/s10846-010-9463-2, June
dc.descriptionLadicky, L., Russell, C., Kohli, P., Torr, P.H.S., Associative hierarchical crfs for object class image segmentation (2009) Computer Vision, 2009 IEEE 12th International Conference on, pp. 739-746
dc.descriptionShotton, J., Winn, J.M., Rother, C., Criminisi, A., Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context (2009) International Journal of Computer Vision, 81 (1), pp. 2-23
dc.descriptionDalal, N., Triggs, B., Histograms of oriented gradients for human detection (2005) Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, I, pp. 886-893. , DOI 10.1109/CVPR.2005.177, 1467360, Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
dc.descriptionTorralba, A., Murphy, K., Freeman, W., Sharing features: Efficient boosting procedures for multiclass object detection (2004) Computer Vision and Pattern Recognition (CVPR), 2, pp. II762-II769. , Vol.2
dc.descriptionShotton, J., Winn, J., Rother, C., Criminisi, A., (2007) Textonboost for Image Understanding: Multi-class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context
dc.descriptionKohonen, T., (2001) Self-organizing Maps, 30. , 3rd ed., ser. Springer series in information sciences, Berlin: Springer, December
dc.languageen
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relationIEEE Intelligent Vehicles Symposium, Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleComprehensive Performance Analysis Of Road Detection Algorithms Using The Common Urban Kitti-road Benchmark
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución