dc.creatorGerminiano T.O.
dc.creatorCorazza M.Z.
dc.creatorSegatelli M.G.
dc.creatorRibeiro E.S.
dc.creatorYabe M.J.S.
dc.creatorGalunin E.
dc.creatorTarley C.R.T.
dc.date2014
dc.date2015-06-25T17:51:35Z
dc.date2015-11-26T14:56:11Z
dc.date2015-06-25T17:51:35Z
dc.date2015-11-26T14:56:11Z
dc.date.accessioned2018-03-28T22:08:12Z
dc.date.available2018-03-28T22:08:12Z
dc.identifier
dc.identifierReactive And Functional Polymers. Elsevier, v. 82, n. , p. 72 - 80, 2014.
dc.identifier13815148
dc.identifier10.1016/j.reactfunctpolym.2014.05.012
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84903714771&partnerID=40&md5=3eb48ac359ae3739126847d315e2de8e
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/86102
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86102
dc.identifier2-s2.0-84903714771
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255433
dc.descriptionA novel hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate) using a double-imprinting approach for the Cu 2+ selective separation from aqueous medium was prepared. In the imprinting process, both Cu2+ ions and surfactant micelles (cetyltrimethylammonium bromide - CTAB) were employed as templates. The hierarchically imprinted organic polymer named (IIP-CTAB), single-imprinted (IIP-no CTAB) and non-imprinted (NIP-CTAB and NIP-no CTAB) polymers were characterized by SEM, FTIR, TG, elemental analysis and textural data from BET (Brunauer-Emmett-Teller) and BJH (Barrett-Joyner-Halenda). Compared to these materials, IIP-CTAB showed higher selectivity, specific surface area and adsorption capacity toward Cu2+ ions. Good selectivity for Cu 2+ was obtained for the Cu2+/Cd2+, Cu 2+/Zn2+ and Cu2+/Co2+ systems when IIP-CTAB was compared to the single-imprinted (IIP-no CTAB) and non double-imprinted polymer (NIP-CTAB), thereby confirming the improvement in the polymer selectivity due to double-imprinting effect. For adsorption kinetic data, the best fit was provided with the pseudo-second-order model for the four materials, thereby indicating the chemical nature of the Cu2+ adsorption process. Cu2+ adsorption under equilibrium was found to follow dual-site Langmuir-Freundlich model isotherm, thus suggesting the existence of adsorption sites with low and high binding energy on the adsorbent surface. From column experiments 600 adsorption-desorption cycles using 1.8 mol L-1 HNO3 as eluent confirmed the great recoverability of adsorbent. The synthesis approach here investigated has been found to be very attractive for the designing of organic ion imprinted polymer and can be expanded to the other polymers to improve performance of ion imprinted polymers in the field of solid phase extraction. © 2014 Elsevier Ltd. All rights reserved.
dc.description82
dc.description
dc.description72
dc.description80
dc.descriptionTobiasz, A., (2012) Talanta, 96, pp. 89-95
dc.descriptionOrozco-Guareño, E., Santiago-Gutiérrez, F., Morán-Quiroz, J.L., Hernandez-Olmos, S.L., Soto, V., De La Cruz, W., Manríquez, R., Gomez-Salazar, S., (2010) J. Colloid Interf. Sci., 349, pp. 583-593
dc.descriptionKesenci, K., Say, R., Denizli, A., (2002) Euro. Polym. J., 38, pp. 1443-1448
dc.description(1993) Guidelines for Drinking Water Quality, V. 1, Recommendations, , WHO (World Health Organization) second ed., Geneva
dc.description(1998) Environmental Health Criteria Monographs from IPCS INCHEM, , http://www.epa.gov/safewater, USEPA (United States Environmental Protection Agency), < >, EHC 200 2001, < http://www.inchem.org/pages/ehc.html >, (accessed 10.09.09)
dc.descriptionMendes, C.B., Lima, G.F., Alves, V.N., Coelho, N.M.M., Dragunski, D.C., Tarley, C.R.T., (2012) Environ. Technol., 33, pp. 167-172
dc.descriptionDuran, A., Soylak, M., Ali, S., (2008) J. Hazard. Mater., 155, pp. 114-120
dc.descriptionXie, F., Liu, G., Wu, F., Guo, G., Li, G., (2012) Chem. Eng. J., 183, pp. 372-380
dc.descriptionCosta, L.M., Ribeiro, E.S., Segatelli, M.G., Nascimento, D.R., De Oliveira, F.M., Tarley, C.R.T., (2011) Spectrochim. Acta B, 66, pp. 329-337
dc.descriptionHoai, N.T., Yoo, D.-K., Kim, D., (2010) J. Hazard. Mater., 173, pp. 462-467
dc.descriptionBirlik, E., Ersoz, A., Denizli, A., Say, R., (2006) Anal. Chim. Acta, 565, pp. 145-151
dc.descriptionSaraji, M., Yousefi, H., (2009) J. Hazard. Mater., 167, pp. 1152-1157
dc.descriptionYu, K.Y., Tsukagoshi, K., Maeda, M., Takagi, M., (1992) Anal. Sci., 8, pp. 701-703
dc.descriptionGao, B.J., An, F.Q., Zhu, Y., (2007) Polymer, 48, pp. 2288-2297
dc.descriptionLiu, Y.Q., Liu, Y., Huang, X.C., (2008) Chem. Res., 19, pp. 70-73
dc.descriptionLuo, X., Luo, S., Zhan, Y., Shu, H., Huang, Y., Tu, X., (2011) J. Hazard. Mater., 192, pp. 949-955
dc.descriptionMarestoni, L.D., Sotomayor, M.D.P.T., Segatelli, M.G., Sartori, L.R., Tarley, C.R.T., (2013) Quím. Nova, 36, pp. 1194-1207
dc.descriptionTarley, C.R.T., Sotomayor, M.D.P.T., Kubota, L.T., (2005) Polímeros Biomiméticos em Química Analítica. Parte 1: Preparo e Aplicações de MIP (Molecularly Imprinted Polymers) em Técnicas de Extração e Separação, Quím, pp. 1076-1086. , Nova 28
dc.descriptionDe Oliveira, F.M., Somera, B.F., Ribeiro, E.S., Segatelli, M.G., Yabe, M.J.S., Galunin, E., Tarley, C.R.T., (2013) Ind. Eng. Chem. Res., 52, pp. 8550-8557
dc.descriptionZhu, X.X., Banana, K., Liu, H.Y., Krause, M., Yang, M., (1999) Macromolecules, 32, pp. 277-281
dc.descriptionZhu, X.X., Banana, K., Yen, R., (1997) Macromolecules, 30, pp. 3031-3035
dc.descriptionDai, S., (2001) Chem. Euro. J., 7, pp. 763-768
dc.descriptionNacano, L.R., Segatelli, M.G., Tarley, C.R.T., (2010) J. Braz. Chem. Soc., 21, pp. 419-430
dc.descriptionWu, G., Wang, Z., Wang, J., He, C., (2007) Anal. Chim. Acta, 582, pp. 304-310
dc.descriptionWang, Z.Q., Wu, G.H., Wang, M., He, C.Y., (2009) J. Mater. Sci., 44, pp. 2694-2699
dc.descriptionSegatelli, M.G., Santos, V.S., Presotto, A.B.T., Yoshida, I.V.P., Tarley, C.R.T., (2010) React. Funct. Polym., 70, pp. 325-333
dc.descriptionSahiner, N., Malci, S., Celikbiçak, O., Kantoglu, O., Salih, B., (2005) Radiat. Phys. Chem., 74, pp. 76-85
dc.descriptionXu, L., Sun, J., Zhao, L., (2011) Radiat. Phys. Chem., 80, pp. 1268-1274
dc.descriptionMerlin, D.L., Sivasankar, B., (2009) Euro. Polym. J., 45, pp. 165-170
dc.descriptionCorma, A., (1997) Chem. Rev., 97, pp. 2373-2419
dc.descriptionShao, D., Ren, X., Hu, J., Chen, Y., Wang, X., (2010) Colloids Surf. A, 360, pp. 74-84
dc.descriptionPlazinski, W., Rudzinski, W., Plazinska, A., (2009) Adv. Colloid Interf. Sci., 152, pp. 2-13
dc.descriptionCáceres, L., Escudey, M., Fuentes, E., Báez, M.E., (2010) J. Hazard. Mater., 179, pp. 795-803
dc.descriptionDiniz, K.M., Gorla, F.A., Ribeiro, E.S., (2014) Chem. Eng. J., 239, pp. 233-241
dc.descriptionEbbing, D.D., Gammon, S.D., (2007) General Chemistry, , Thomson Brooks/Cole Belmont
dc.descriptionWang, S., Zhang, R., (2006) Microchim. Acta, 154, pp. 73-80
dc.descriptionBaghel, A., Boopathi, M., Singh, B., Pandey, P., Mahato, T.H., Gutch, P.K., Sekhar, K., (2007) Biosen. Bioelectron., 22, pp. 3326-3334
dc.descriptionBi, X., Lau, R.J., Yang, K., (2007) Langmuir, 23, pp. 8079-8086
dc.descriptionDakova, I., Karadjova, I., Ivanov, I., Georgieva, V., Evtimova, B., Georgiev, G., (2007) Anal. Chim. Acta, 584, pp. 196-203
dc.languageen
dc.publisherElsevier
dc.relationReactive and Functional Polymers
dc.rightsfechado
dc.sourceScopus
dc.titleSynthesis Of Novel Copper Ion-selective Material Based On Hierarchically Imprinted Cross-linked Poly(acrylamide-co-ethylene Glycol Dimethacrylate)
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución