Brasil
| Artículos de revistas
Well-posedness And Orbital Stability Of Traveling Waves For The Schrödinger-improved Boussinesq System
Registro en:
Current Opinion In Plant Biology. Elsevier Ltd, v. 22, n. , p. 206 - 218, 2014.
13695266
10.1016/j.nonrwa.2014.09.001
2-s2.0-84907605161
Autor
Esfahani A.
Pastor A.
Institución
Resumen
Considered here is the Schrödinger-improved Boussinesq system. First we prove local and global well-posedness in the energy space for the periodic initial-value problem. The proof combines a Strichartz-type estimate with the contraction mapping principle. Second we establish the existence and orbital stability of periodic and solitary traveling-wave solutions. The stability results are set out in the context of abstract Hamiltonian systems. 22
206 218 Makhankov, V.G., Dynamics of classical solitons (in non-integrable systems) (1978) Phys. Rep. Phys. Lett. C, 35, pp. 1-128 Clarkson, A., LeVeque, R.J., Saxton, R., Solitary-wave interactions in elastic rods (1986) Stud. Appl. Math., 75, pp. 95-122 Zakharov, V.E., Collapse of Langmuir waves (1972) Sov. Phys.-JETP, 35, pp. 908-914 Ozawa, T., Tsutaya, K., On the Cauchy problem for Schrödinger-improved Boussinesq equations (2007) Adv. Stud. Pure Math., , 47-1 Akahori, T., Well-posedness for the Schrödinger-improved Boussinesq system and related bilinear estimates (2007) Funkcial. Ekvac., 50, pp. 469-489 Wang, H., Cui, S., On global existence for the Schrödinger-IB system (2008) Nonlinear Anal., 69, pp. 472-482 Cho, Y., Ozawa, T., Global existence on nonlinear Schrödinger-IMBq equations (2006) J. Math. Kyoto Univ., 46, pp. 535-552 Wang, S., Chen, G., Cauchy problem for the nonlinear Schrödinger-IMBQ equations (2006) Discrete Contin. Dyn. Syst. Ser. B, 6, pp. 472-482 Bourgain, J., Periodic nonlinear Schrödinger equation and invariant measures (1994) Comm. Math. Phys., 66, pp. 1-26 Grillakis, M., Shatah, J., Strauss, W., Stability theory of solitary waves in the presence of symmetry I (1987) J. Funct. Anal., 74, pp. 160-197 Grillakis, M., Shatah, J., Strauss, W., Stability theory of solitary waves in the presence of symmetry II (1990) J. Funct. Anal., 94, pp. 308-348 Iorio, R.J., Iorio, V.M., Fourier Analysis and Partial Differential Equations (2001) Cambridge Studies in Advanced Mathematics, 70. , Cambridge University Press Ozawa, T., Tsutsumi, Y., Existence and smoothing effect of solutions for Zakharov equations (1992) Publ. RIMS, Kyoto Univ., 28, pp. 329-361 Haraux, A., Nonlinear Evolution Equations - Global Behavior of Solutions (1981) Lecture Notes in Mathematics, 841. , Springer-Verlag, New York Angulo, J., Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Kortewegde Vries equations (2007) J. Differential Equations, 235, pp. 1-30 Angulo, J., Pastor, A., Stability of periodic optical solitons for a nonlinear Schrödinger system (2009) Proc. Roy. Soc. Edinburgh Sect. A, 139, pp. 927-959 Byrd, P.F., Friedman, M.D., (1971) Handbook of Elliptic Integrals for Engineers and Scientists, , Springer Verlag, Nova York Neves, A., Isoinertial family of operators and convergence of KdV cnoidal waves to solitons (2008) J. Differential Equations, 244, pp. 875-886 Kato, T., Perturbation theory for linear operators (1995) Classics in Mathematics, , Springer-Verlag, Berlin Eastham, M.S.P., (1973) The Spectral Theory of Periodic Differential Equations, , Scottish Academic Press, Edinburgh Magnus, W., Winkler, S., (1976) Hill's Equation, Interscience, Tracts Pure Appl. Math., , New York Reed, M., Simon, B., (1978) Methods of Modern Mathematical Physics, 4. , New York Henry, D., (1981) Geometric Theory of Semilinear Parabolic Equations, , Springer-Verlag, New York