dc.creatorParada M.
dc.creatorBorges R.A.
dc.creatorSbarbaro D.
dc.creatorPeres P.L.D.
dc.date2011
dc.date2015-06-30T20:46:36Z
dc.date2015-11-26T14:55:06Z
dc.date2015-06-30T20:46:36Z
dc.date2015-11-26T14:55:06Z
dc.date.accessioned2018-03-28T22:07:11Z
dc.date.available2018-03-28T22:07:11Z
dc.identifier9783902661937
dc.identifierIfac Proceedings Volumes (ifac-papersonline). , v. 18, n. PART 1, p. 4614 - 4619, 2011.
dc.identifier14746670
dc.identifier10.3182/20110828-6-IT-1002.00279
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84866747572&partnerID=40&md5=5c99f05b7469376faeb6206523e1d53f
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/109183
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/109183
dc.identifier2-s2.0-84866747572
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255299
dc.descriptionThis paper deals with the problem of PID design for continuous-time systems with time delays. The system is assumed to be free of parametric disturbances and affected by a time-invariant discrete delay of known magnitude. The robustness of the PID control with respect to structured uncertainties is investigated with the small-gain theorem and better performance is sought through the minimization of an upper bound to the closed-loop system H ∞ norm. A Lyapunov-Krasovskii type functional is used yielding delay-dependent design conditions. The controller design is accomplished by means of a convex optimization procedure formulated using linear matrix inequalities (LMIs). Numerical experiments are provided to illustrate the main characteristics of the proposed design method. The particular case of a recycle process controller is addressed. © 2011 IFAC.
dc.description18
dc.descriptionPART 1
dc.description4614
dc.description4619
dc.descriptionAsröm, K.J., Hägglund, T., (1995) PID Controllers, , Instrument Society of America
dc.descriptionBoyd, S., El Ghaoui, K., Feron, E., Balakrishnan, V., Linear matrix inequality in systems and control theory (1994) Studies in Applied Mathematics, , SIAM, Philadelphia
dc.descriptionGe, M., Chiu, M., Wang, Q., Robust PID controller design via LMI approach (2002) Journal of Process Control, 12, pp. 3-13
dc.descriptionGrassi, E., Tsakalis, K., Pid controller tuning by frequency loop-shaping: Application to diffusion furnace temperature control (2000) IEEE Transactions on Control Systems Technology, 8 (5). , September
dc.descriptionGu, K., An integral inequality in the stability problem of timedelay systems (2000) Proc. 39th IEEE Conf. Decision Contr., 3, pp. 2805-2810. , Sydney, Australia, December
dc.descriptionHara, S., Iwasaki, T., Shiokata, D., Robust PID control using generalized KYP synthesis (2006) IEEE Control Systems Magazine, pp. 80-91. , February
dc.descriptionHohenbichler, N., All stabilizing PID controllers for time delay systems (2009) Automatica, , doi:10.1016/j.automatica.2009.07.026
dc.descriptionLöfberg, J., YALMIP: A toolbox for modeling and optimization in MATLAB (2004) Proc. 2004 IEEE Int. Symp. on Comput. Aided Control Syst. Des., pp. 284-289. , http://control.ee.ethz.ch/joloef/yalmip.php, Taipei, Taiwan, September
dc.descriptionMadhuranthakam, C.R., Elkamel, A., Budman, H., Optimal tuning of PID controllers for FOPTD, SOPTD and SOPTD with lead processes (2008) Chemical Engineering and Processing, 47, pp. 251-264
dc.descriptionMartelli, G., Stability of PID-controlled second-order time-delay feedback systems (2009) Automatica, , doi:10.1016/j.automatica.2009.05.031
dc.descriptionO'Dwyer, A., PI and PID controller tuning rule design for processes with delay, to achieve constant gain and phase margins for all values of delay (2001) Proceedings of the Irish Signals and Systems Conference, pp. 96-101. , National University of Ireland, Maynooth, June
dc.descriptionPanda, R.C., Yu, C., Huang, H., PID tuning rules for SOPDT systems: Review and some new results (2004) ISA Transactions, 43, p. 283295
dc.descriptionRem, J., Zhang, Q., Robust H ∞ control for uncertain descriptor system by proportional-derivative state feedback (2010) International Journal of Control, 83 (1), pp. 89-96. , January
dc.descriptionRosinová, D., Veselý, V., Robust PID decentralized controller design using LMI (2007) International Journal of Computers, Communications & Control, 3 (2), pp. 195-204
dc.descriptionSaeki, M., Fixed structure PID controller design for standard H ∞ control problem (2006) Automatica, , doi:10.1016/j.automatica.2005.07.006
dc.descriptionShamsuzzoha, M., Lee, M., Design of advanced PID controller for enhanced disturbance rejection of second-order processes with time delay (2008) AIChE Journal, 54 (6)
dc.descriptionSturm, J.F., Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones (1999) Optim. Method Softw., 11-12, pp. 625-653. , http://sedumi.mcmaster.ca/
dc.descriptionZiegler, J.G., Nichols, N.B., Optimum settings for automatic controllers (1942) Transactions of the ASME, 64, pp. 759-768
dc.descriptionZhou, K., Doyle, J.C., Glover, K., Robust and optimal control (1996) Upper Saddle River, , NJ USA: Prentice Hall
dc.languageen
dc.publisher
dc.relationIFAC Proceedings Volumes (IFAC-PapersOnline)
dc.rightsfechado
dc.sourceScopus
dc.titleRobust Pid Design For Second-order Processes With Time-delay And Structured Uncertainties.
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución