Artículos de revistas
The Higher Susceptibility Of Congenital Analbuminemic Rats To Ca 2+-induced Mitochondrial Permeability Transition Is Associated With The Increased Expression Of Cyclophilin D And Nitrosothiol Depletion
Registration in:
Molecular Genetics And Metabolism. , v. 104, n. 4, p. 521 - 528, 2011.
10967192
10.1016/j.ymgme.2011.08.031
2-s2.0-82255179426
Author
Figueira T.R.
Castilho R.F.
Saito A.
Oliveira H.C.F.
Vercesi A.E.
Institutions
Abstract
Congenital analbuminemia is a rare autosomal recessive disorder characterized by a trace level of albumin in blood plasma and mild clinical symptoms. Analbuminemic patients generally present associated abnormalities, among which dyslipidemia is a hallmark. In this study, we show that mitochondria isolated from different tissues (liver, heart and brain) from 3-month-old analbuminemic rats (NAR) present a higher susceptibility to Ca 2+-induced mitochondrial permeability transition (MPT), as assessed by either Ca 2+-induced mitochondrial swelling, dissipation of membrane potential or mitochondrial Ca 2+ release. The Ca 2+ retention capacity of the liver mitochondria isolated from 3-month-old NAR was about 50% that of the control. Interestingly, the assessment of this variable in 21-day-old NAR indicated that the mitochondrial Ca 2+ retention capacity was preserved at this age, as compared to age-matched controls, which indicates that a reduced capacity for mitochondrial Ca 2+ retention is not a constitutive feature. The search for putative mediators of MPT sensitization in NAR revealed a 20% decrease in mitochondrial nitrosothiol content and a 30% increase in cyclophilin D expression. However, the evaluation of other variables related to mitochondrial redox status showed similar results between the controls and NAR, i.e., namely the contents of reduced mitochondrial membrane protein thiol groups and total glutathione, H 2O 2 release rate, and NAD(P)H reduced state. We conclude that the higher expression of cyclophilin D, a major component of the MPT pore, and decreased nitrosothiol content in NAR mitochondria may underlie MPT sensitization in these animals. © 2011 Elsevier Inc. 104 4 521 528 Peters, T., (1996) All about Albumin: Biochemistry, Genetics, and Medical Applications, , Academic Press, San Diego Turell, L., Carballal, S., Botti, H., Radi, R., Alvarez, B., Oxidation of the albumin thiol to sulfenic acid and its implications in the intravascular compartment (2009) Braz. J. Med. Biol. Res., 42, pp. 305-311 Turell, L., Botti, H., Carballal, S., Radi, R., Alvarez, B., Sulfenic acid-a key intermediate in albumin thiol oxidation (2009) J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 877, pp. 3384-3392 Takahashi, M., Kusumi, K., Shumiya, S., Nagase, S., Plasma lipid concentrations and enzyme activities in Nagase analbuminemia rats (NAR) (1983) Jikken Dobutsu, 32, pp. 39-46 Shaper, A.G., Wannamethee, S.G., Whincup, P.H., Serum albumin and risk of stroke, coronary heart disease, and mortality: the role of cigarette smoking (2004) J. Clin. Epidemiol., 57, pp. 195-202 Schalk, B.W., Visser, M., Bremmer, M.A., Penninx, B.W., Bouter, L.M., Deeg, D.J., Change of serum albumin and risk of cardiovascular disease and all-cause mortality: Longitudinal Aging Study Amsterdam (2006) Am. J. Epidemiol., 164, pp. 969-977 Nagase, S., Shimamune, K., Shumiya, S., Albumin-deficient rat mutant (1979) Science, 205, pp. 590-591 Kallee, E., Bennhold's analbuminemia: a follow-up study of the first two cases (1996) J. Lab. Clin. Med., 127, pp. 470-480 Kim, E.J., Lee, A.K., Kim, S.H., Kim, S.G., Lee, M.G., Pharmacokinetics and pharmacodynamics of intravenous azosemide in mutant Nagase analbuminemic rats (2003) Drug Metab. Dispos., 31, pp. 194-201 Minchiotti, L., Galliano, M., Kragh-Hansen, U., Peters, T., Mutations and polymorphisms of the gene of the major human blood protein, serum albumin (2008) Hum. Mutat., 29, pp. 1007-1016 Baldo-Enzi, G., Baiocchi, M.R., Vigna, G., Andrian, C., Mosconi, C., Fellin, R., Analbuminaemia: a natural model of metabolic compensatory systems (1987) J. Inherit. Metab. Dis., 10, pp. 317-329 Esumi, H., Okui, M., Sato, S., Sugimura, T., Nagase, S., Absence of albumin mRNA in the liver of analbuminemic rats (1980) Proc. Natl. Acad. Sci. U.S.A., 77, pp. 3215-3219 Van Tol, A., Jansen, E.H., Koomans, H.A., Joles, J.A., Hyperlipoproteinemia in Nagase analbuminemic rats: effects of pravastatin on plasma (apo)lipoproteins and lecithin:cholesterol acyltransferase activity (1991) J. Lipid Res., 32, pp. 1719-1728 Koot, B.G., Houwen, R., Pot, D.J., Nauta, J., Congenital analbuminaemia: biochemical and clinical implications. A case report and literature review (2004) Eur. J. Pediatr., 163, pp. 664-670 Newstead, J., Card, S.E., Lyon, A.W., Low serum albumin and abnormal body shape in a young Canadian First Nations woman (2004) Laboratory Medicine, 35. , 350-+ Figueira, T.R., Vercesi, A.E., Oliveira, H.C., Lack of plasma albumin impairs intravascular lipolysis and explains the associated free fatty acids deficiency and hypertriglyceridemia (2010) Lipids Health Dis, 9, p. 146 Weinberg, J.M., Lipotoxicity (2006) Kidney Int., 70, pp. 1560-1566 Alberici, L.C., Oliveira, H.C., Bighetti, E.J., de Faria, E.C., Degaspari, G.R., Souza, C.T., Vercesi, A.E., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2003) J. Bioenerg. Biomembr., 35, pp. 451-457 Alberici, L.C., Oliveira, H.C., Patricio, P.R., Kowaltowski, A.J., Vercesi, A.E., Hyperlipidemic mice present enhanced catabolism and higher mitochondrial ATP-sensitive K+ channel activity (2006) Gastroenterology, 131, pp. 1228-1234 Alberici, L.C., Oliveira, H.C., Paim, B.A., Mantello, C.C., Augusto, A.C., Zecchin, K.G., Gurgueira, S.A., Vercesi, A.E., Mitochondrial ATP-sensitive K(+) channels as redox signals to liver mitochondria in response to hypertriglyceridemia (2009) Free Radic. Biol. Med., 47, pp. 1432-1439 Oliveira, H.C., Cosso, R.G., Alberici, L.C., Maciel, E.N., Salerno, A.G., Dorighello, G.G., Velho, J.A., Vercesi, A.E., Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria (2005) FASEB J., 19, pp. 278-280 Paim, B.A., Velho, J.A., Castilho, R.F., Oliveira, H.C., Vercesi, A.E., Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement (2008) Free Radic. Biol. Med., 44, pp. 444-451 Lemasters, J.J., Theruvath, T.P., Zhong, Z., Nieminen, A.L., Mitochondrial calcium and the permeability transition in cell death (2009) Biochim. Biophys. Acta, 1787, pp. 1395-1401 Castilho, R.F., Kowaltowski, A.J., Meinicke, A.R., Bechara, E.J., Vercesi, A.E., Permeabilization of the inner mitochondrial membrane by Ca2+ ions is stimulated by t-butyl hydroperoxide and mediated by reactive oxygen species generated by mitochondria (1995) Free Radic. Biol. Med., 18, pp. 479-486 Kowaltowski, A.J., Castilho, R.F., Vercesi, A.E., Mitochondrial permeability transition and oxidative stress (2001) FEBS Lett., 495, pp. 12-15 Coelho, J.L., Vercesi, A.E., Retention of Ca2+ by rat liver and rat heart mitochondria: effect of phosphate, Mg2+, and NAD(P) redox state (1980) Arch. Biochem. Biophys., 204, pp. 141-147 Lehninger, A.L., Vercesi, A., Bababunmi, E.A., Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides (1978) Proc. Natl. Acad. Sci. U.S.A., 75, pp. 1690-1694 Vercesi, A.E., Possible participation of membrane thiol groups on the mechanism of NAD(P)+-stimulated Ca2+ efflux from mitochondria (1984) Biochem. Biophys. Res. Commun., 119, pp. 305-310 Valle, V.G., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants (1993) Arch. Biochem. Biophys., 307, pp. 1-7 Vercesi, A.E., The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria (1987) Arch. Biochem. Biophys., 252, pp. 171-178 Brookes, P.S., Salinas, E.P., Darley-Usmar, K., Eiserich, J.P., Freeman, B.A., Darley-Usmar, V.M., Anderson, P.G., Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release (2000) J. Biol. Chem., 275, pp. 20474-20479 Leite, A.C., Oliveira, H.C., Utino, F.L., Garcia, R., Alberici, L.C., Fernandes, M.P., Castilho, R.F., Vercesi, A.E., Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols (2010) Biochim Biophys Acta, 1797, pp. 1210-1216 Nguyen, T.T.M., Stevens, M., Kohr, M., Steenbergen, S., Murphy, E., S-nitrosylation of cyclophilin D alters mitochondrial permeability transition pore (2011) FASEB J., 25, pp. 1031-1033 Kaplan, R.S., Pedersen, P.L., Characterization of phosphate efflux pathways in rat liver mitochondria (1983) Biochem. J., 212, pp. 279-288 Rosenthal, R.E., Hamud, F., Fiskum, G., Varghese, P.J., Sharpe, S., Cerebral ischemia and reperfusion: prevention of brain mitochondrial injury by lidoflazine (1987) J. Cereb. Blood Flow Metab., 7, pp. 752-758 Kowaltowski, A.J., Seetharaman, S., Paucek, P., Garlid, K.D., Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria (2001) Am. J. Physiol. Heart Circ. Physiol., 280, pp. H649-H657 Figueira, T.R.M., Vercesi, A.E.D.R., Castilho, R.F., Safranine as a fluorescent probe for the evaluation of mitochondrial membrane potential in isolated organelles and permeabilized cells Methods Mol. Biol., , (in press), doi:10.1007/978-1-61779-382-0_7 Saito, A., Castilho, R.F., Inhibitory effects of adenine nucleotides on brain mitochondrial permeability transition (2010) Neurochem Res, 35, pp. 1667-1674 Zaidan, E., Sims, N.R., The calcium content of mitochondria from brain subregions following short-term forebrain ischemia and recirculation in the rat (1994) J. Neurochem., 63, pp. 1812-1819 Vacca, R.A., Moro, L., Caraccio, G., Guerrieri, F., Marra, E., Greco, M., Thyroid hormone administration to hypothyroid rats restores the mitochondrial membrane permeability properties (2003) Endocrinology, 144, pp. 3783-3788 Shepherd, D., Garland, P.B., The kinetic properties of citrate synthase from rat liver mitochondria (1969) Biochem. J., 114, pp. 597-610 Teare, J.P., Punchard, N.A., Powell, J.J., Lumb, P.J., Mitchell, W.D., Thompson, R.P., Automated spectrophotometric method for determining oxidized and reduced glutathione in liver (1993) Clin. Chem., 39, pp. 686-689 Jocelyn, P.C., Spectrophotometric assay of thiols (1987) Methods Enzymol., 143, pp. 44-67 Kowaltowski, A.J., Vercesi, A.E., Castilho, R.F., Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: correlation with mitochondrial permeability transition (1997) Biochim. Biophys. Acta, 1318, pp. 395-402 Park, J.K., Kostka, P., Fluorometric detection of biological S-nitrosothiols (1997) Anal. Biochem., 249, pp. 61-66 Joles, J.A., Willekes-Koolschijn, N., van Tol, A., Geelhoed-Mieras, M.M., Danse, L.H., van Garderen, E., Kortlandt, W., Koomans, H.A., Hyperlipoproteinemia in one-year-old analbuminemic rats (1991) Atherosclerosis, 88, pp. 35-47 Lotscher, H.R., Winterhalter, K.H., Carafoli, E., Richter, C., Hydroperoxides can modulate the redox state of pyridine nucleotides and the calcium balance in rat liver mitochondria (1979) Proc. Natl. Acad. Sci. U.S.A., 76, pp. 4340-4344 Baines, C.P., Kaiser, R.A., Purcell, N.H., Blair, N.S., Osinska, H., Hambleton, M.A., Brunskill, E.W., Molkentin, J.D., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death (2005) Nature, 434, pp. 658-662 Giorgio, V., Soriano, M.E., Basso, E., Bisetto, E., Lippe, G., Forte, M.A., Bernardi, P., Cyclophilin D in mitochondrial pathophysiology (2010) Biochim Biophys Acta, 1797, pp. 1113-1118 Piot, C., Croisille, P., Staat, P., Thibault, H., Rioufol, G., Mewton, N., Elbelghiti, R., Ovize, M., Effect of cyclosporine on reperfusion injury in acute myocardial infarction (2008) N. Engl. J. Med., 359, pp. 473-481 Leger, P.L., De Paulis, D., Branco, S., Bonnin, P., Couture-Lepetit, E., Baud, O., Renolleau, S., Charriaut-Marlangue, C., Evaluation of cyclosporine A in a stroke model in the immature rat brain (2011) Exp Neurol, 230, pp. 58-66 Fernstrom, M., Tonkonogi, M., Sahlin, K., Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle (2004) J. Physiol., 554, pp. 755-763 Csukly, K., Ascah, A., Matas, J., Gardiner, P.F., Fontaine, E., Burelle, Y., Muscle denervation promotes opening of the permeability transition pore and increases the expression of cyclophilin D (2006) J. Physiol., 574, pp. 319-327 Matas, J., Young, N.T., Bourcier-Lucas, C., Ascah, A., Marcil, M., Deschepper, C.F., Burelle, Y., Increased expression and intramitochondrial translocation of cyclophilin-D associates with increased vulnerability of the permeability transition pore to stress-induced opening during compensated ventricular hypertrophy (2009) J. Mol. Cell. Cardiol., 46, pp. 420-430 Moro, L., Arbini, A.A., Hsieh, J.T., Ford, J., Simpson, E.R., Hajibeigi, A., Oz, O.K., Aromatase deficiency inhibits the permeability transition in mouse liver mitochondria (2010) Endocrinology, 151, pp. 1643-1652 King, A.L., Swain, T.M., Dickinson, D.A., Lesort, M.J., Bailey, S.M., Chronic ethanol consumption enhances sensitivity to Ca(2+)-mediated opening of the mitochondrial permeability transition pore and increases cyclophilin D in liver (2010) Am J Physiol Gastrointest Liver Physiol, 299, pp. G954-966 Naga, K.K., Sullivan, P.G., Geddes, J.W., High cyclophilin D content of synaptic mitochondria results in increased vulnerability to permeability transition (2007) J. Neurosci., 27, pp. 7469-7475 Hazelton, J.L., Petrasheuskaya, M., Fiskum, G., Kristian, T., Cyclophilin D is expressed predominantly in mitochondria of gamma-aminobutyric acidergic interneurons (2009) J. Neurosci. Res., 87, pp. 1250-1259 Chouchani, E.T., Hurd, T.R., Nadtochiy, S.M., Brookes, P.S., Fearnley, I.M., Lilley, K.S., Smith, R.A., Murphy, M.P., Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation (2010) Biochem J, 430, pp. 49-59 Yamamoto, Y., Wakabayashi, K., Niki, E., Nagao, M., Comparison of plasma levels of lipid hydroperoxides and antioxidants in hyperlipidemic Nagase analbuminemic rats, Sprague-Dawley rats, and humans (1992) Biochem. Biophys. Res. Commun., 189, pp. 518-523 Joles, J.A., van Goor, H., van der Horst, M.L., van Tol, A., Elema, J.D., Koomans, H.A., High lipid levels in very low density lipoprotein and intermediate density lipoprotein may cause proteinuria and glomerulosclerosis in aging female analbuminemic rats (1995) Lab. Invest., 73, pp. 912-921 Bourdon, E., Loreau, N., Blache, D., Glucose and free radicals impair the antioxidant properties of serum albumin (1999) FASEB J., 13, pp. 233-244 Bourdon, E., Blache, D., The importance of proteins in defense against oxidation (2001) Antioxid. Redox Signal., 3, pp. 293-311 Ishima, Y., Kragh-Hansen, U., Maruyama, T., Otagiri, M., Albumin as a nitric oxide-traffic protein: characterization, biochemistry and possible future therapeutic applications (2009) Drug Metab. Pharmacokinet., 24, pp. 308-317 Ishima, Y., Akaike, T., Kragh-Hansen, U., Hiroyama, S., Sawa, T., Suenaga, A., Maruyama, T., Otagiri, M., S-nitrosylated human serum albumin-mediated cytoprotective activity is enhanced by fatty acid binding (2008) J. Biol. Chem., 283, pp. 34966-34975 Minamiyama, Y., Takemura, S., Inoue, M., Albumin is an important vascular tonus regulator as a reservoir of nitric oxide (1996) Biochem. Biophys. Res. Commun., 225, pp. 112-115 Fagian, M.M., Pereira-da-Silva, L., Martins, I.S., Vercesi, A.E., Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants (1990) J. Biol. Chem., 265, pp. 19955-19960 Teusink, B., Voshol, P.J., Dahlmans, V.E., Rensen, P.C., Pijl, H., Romijn, J.A., Havekes, L.M., Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake (2003) Diabetes, 52, pp. 614-620