Artículos de revistas
Metformin Amplifies Chemotherapy-induced Ampk Activation And Antitumoral Growth
Registro en:
Clinical Cancer Research. , v. 17, n. 12, p. 3993 - 4005, 2011.
10780432
10.1158/1078-0432.CCR-10-2243
2-s2.0-79959207505
Autor
Rocha G.Z.
Dias M.M.
Ropelle E.R.
Osorio-Costa F.
Rossato F.A.
Vercesi A.E.
Saad M.J.A.
Carvalheira J.B.C.
Institución
Resumen
Purpose: Metformin is a widely used antidiabetic drug whose anticancer effects, mediated by the activation of AMP-activated protein kinase (AMPK) and reduction of mTOR signaling, have become noteworthy. Chemotherapy produces genotoxic stress and induces p53 activity, which can cross-talk with AMPK/mTOR pathway. Herein, we investigate whether the combination of metformin and paclitaxel has an effect in cancer cell lines. Experimental Design: Human tumors were xenografted into severe combined immunodeficient (SCID) mice and the cancer cell lines were treated with only paclitaxel or only metformin, or a combination of both drugs. Western blotting, flow cytometry, and immunohistochemistry were then used to characterize the effects of the different treatments. Results: The results presented herein show that the addition of metformin to paclitaxel leads to quantitative potentialization of molecular signaling through AMPK and a subsequent potent inhibition of the mTOR signaling pathway. Treatment with metformin and paclitaxel resulted in an increase in the number of cells arrested in the G2-M phase of the cell cycle, and decreased the tumor growth and increased apoptosis in tumor-bearing mice, when compared with individual drug treatments. Conclusion: We have provided evidence for a convergence of metformin and paclitaxel induced signaling at the level of AMPK. This mechanism shows how different drugs may cooperate to augment antigrowth signals, and suggests that target activation of AMPK by metformin may be a compelling ally in cancer treatment. ©2011 AACR. 17 12 3993 4005 Barone, B.B., Yeh, H.C., Snyder, C.F., Peairs, K.S., Stein, K.B., Derr, R.L., Long-term all-cause mortality in cancer patients with preexisting diabetes mellitus: A systematic review and meta-analysis (2008) JAMA, 300, pp. 2754-2764 Vigneri, P., Frasca, F., Sciacca, L., Pandini, G., Vigneri, R., Diabetes and cancer (2009) Endocr Relat Cancer, 16, pp. 1103-1123 Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34) (1998) Lancet, 352, pp. 854-865. , UK Prospective Diabetes Study (UKPDS) Group Evans, J.M.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R., Morris, A.D., Metformin and reduced risk of cancer in diabetic patients (2005) British Medical Journal, 330 (7503), pp. 1304-1305. , DOI 10.1136/bmj.38415.708634.F7 Li, D., Yeung, S.C., Hassan, M.M., Konopleva, M., Abbruzzese, J.L., Antidiabetic therapies affect risk of pancreatic cancer (2009) Gastroenterology, 137, pp. 482-488 Libby, G., Donnelly, L.A., Donnan, P.T., Alessi, D.R., Morris, A.D., Evans, J.M., New users of metformin are at low risk of incident cancer: A cohort study among people with type 2 diabetes (2009) Diabetes Care, 32, pp. 1620-1625 Anisimov, V.N., Berstein, L.M., Egormin, P.A., Piskunova, T.S., Popovich, I.G., Zabezhinski, M.A., Kovalenko, I.G., Franceschi, C., Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice (2005) Experimental Gerontology, 40 (8-9), pp. 685-693. , DOI 10.1016/j.exger.2005.07.007, PII S0531556505001531 Sahra, I.B., Laurent, K., Loubat, A., Giorgetti-Peraldi, S., Colosetti, P., Auberger, P., Tanti, J.F., Bost, F., The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level (2008) Oncogene, 27 (25), pp. 3576-3586. , DOI 10.1038/sj.onc.1211024, PII 1211024 Buzzai, M., Jones, R.G., Amaravadi, R.K., Lum, J.J., DeBerardinis, R.J., Zhao, F., Viollet, B., Thompson, C.B., Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth (2007) Cancer Research, 67 (14), pp. 6745-6752. , http://cancerres.aacrjournals.org/cgi/reprint/67/14/6745, DOI 10.1158/0008-5472.CAN-06-4447 Dowling, R.J.O., Zakikhani, M., Fantus, I.G., Pollak, M., Sonenberg, N., Metformin inhibits mammalian target of rapamycin-dependent translation initiation in breast cancer cells (2007) Cancer Research, 67 (22), pp. 10804-10812. , http://cancerres.aacrjournals.org/cgi/reprint/67/22/10804, DOI 10.1158/0008-5472.CAN-07-2310 Huang, X., Wullschleger, S., Shpiro, M., McGuire, V.A., Sakamoto, K., Woods, Y.L., McBurnie, W., Alessi, D.R., Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice (2008) Biochemical Journal, 412 (2), pp. 211-221. , DOI 10.1042/BJ20080557 Zakikhani, M., Dowling, R., Fantus, I.G., Sonenberg, N., Pollak, M., Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells (2006) Cancer Research, 66 (21), pp. 10269-10273. , DOI 10.1158/0008-5472.CAN-06-1500 Jiralerspong, S., Palla, S.L., Giordano, S.H., Meric-Bernstam, F., Liedtke, C., Barnett, C.M., Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer (2009) J Clin Oncol, 27, pp. 3297-3302 Hirsch, H.A., Iliopoulos, D., Tsichlis, P.N., Struhl, K., Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission (2009) Cancer Res, 69, pp. 7507-7511 Shaw, R.J., Lamia, K.A., Vasquez, D., Koo, S.-H., Bardeesy, N., DePinho, R.A., Montminy, M., Cantley, L.C., Medicine: The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin (2005) Science, 310 (5754), pp. 1642-1646. , DOI 10.1126/science.1120781 Meric-Bernstam, F., Gonzalez-Angulo, A.M., Targeting the mTOR signaling network for cancer therapy (2009) J Clin Oncol, 27, pp. 2278-2287 Inoki, K., Li, Y., Zhu, T., Wu, J., Guan, K.-L., TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling (2002) Nature Cell Biology, 4 (9), pp. 648-657. , DOI 10.1038/ncb839 Kimura, N., Tokunaga, C., Dalal, S., Richardson, C., Yoshino, K.-I., Hara, K., Kemp, B.E., Yonezawa, K., A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway (2003) Genes to Cells, 8 (1), pp. 65-79. , DOI 10.1046/j.1365-2443.2003.00615.x Shaw, R.J., Bardeesy, N., Manning, B.D., Lopez, L., Kosmatka, M., DePinho, R.A., Cantley, L.C., The LKB1 tumor suppressor negatively regulates mTOR signaling (2004) Cancer Cell, 6 (1), pp. 91-99. , DOI 10.1016/j.ccr.2004.06.007, PII S1535610804001771 Ben Sahra, I., Le Marchand-Brustel, Y., Tanti, J.F., Bost, F., Metformin in cancer therapy: A new perspective for an old antidiabetic drug? (2010) Mol Cancer Ther, 9, pp. 1092-1099 Shaw, R.J., Kosmatka, M., Bardeesy, N., Hurley, R.L., Witters, L.A., DePinho, R.A., Cantley, L.C., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress (2004) Proceedings of the National Academy of Sciences of the United States of America, 101 (10), pp. 3329-3335. , DOI 10.1073/pnas.0308061100 Hawley, S.A., Pan, D.A., Mustard, K.J., Ross, L., Bain, J., Edelman, A.M., Frenguelli, B.G., Hardie, D.G., Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase (2005) Cell Metabolism, 2 (1), pp. 9-19. , DOI 10.1016/j.cmet.2005.05.009, PII S155041310500166X Hurley, R.L., Anderson, K.A., Franzone, J.M., Kemp, B.E., Means, A.R., Witters, L.A., The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases (2005) Journal of Biological Chemistry, 280 (32), pp. 29060-29066. , DOI 10.1074/jbc.M503824200 Kahn, B.B., Alquier, T., Carling, D., Hardie, D.G., AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism (2005) Cell Metabolism, 1 (1), pp. 15-25. , DOI 10.1016/j.cmet.2004.12.003, PII S1550413104000099 Inoki, K., Zhu, T., Guan, K.-L., TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival (2003) Cell, 115 (5), pp. 577-590. , DOI 10.1016/S0092-8674(03)00929-2 Saucedo, L.J., Gao, X., Chiarelli, D.A., Li, L., Pan, D., Edgar, B.A., Rheb promotes cell growth as a component of the insulin/TOR signalling network (2003) Nat Cell Biol, 5, pp. 566-571 Manning, B.D., Tee, A.R., Logsdon, M.N., Blenis, J., Cantley, L.C., Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/Akt pathway (2002) Molecular Cell, 10 (1), pp. 151-162. , DOI 10.1016/S1097-2765(02)00568-3 Brunn, G.J., Hudson, C.C., Sekulic, A., Williams, J.M., Hosoi, H., Houghton, P.J., Lawrence Jr., J.C., Abraham, R.T., Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin (1997) Science, 277 (5322), pp. 99-101. , DOI 10.1126/science.277.5322.99 Feng, Z., Zhang, H., Levine, A.J., Jin, S., The coordinate regulation of the p53 and mTOR pathways in cells (2005) Proceedings of the National Academy of Sciences of the United States of America, 102 (23), pp. 8204-8209. , DOI 10.1073/pnas.0502857102 Budanov, A.V., Karin, M., p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling (2008) Cell, 134, pp. 451-460 Beslija, S., Bonneterre, J., Burstein, H.J., Cocquyt, V., Gnant, M., Heinemann, V., Third consensus on medical treatment of metastatic breast cancer (2009) Ann Oncol, 20, pp. 1771-1785 Buccheri, G., Ferrigno, D., Second-line weekly paclitaxel in patients with inoperable non-small cell lung cancer who fail combination chemotherapy with cisplatin (2004) Lung Cancer, 45 (2), pp. 227-236. , DOI 10.1016/j.lungcan.2004.01.011, PII S0169500204000418 Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state (2010) J Clin Invest, 120, pp. 2355-2369 Ju, J., Schmitz, J.C., Song, B., Kudo, K., Chu, E., Regulation of p53 expression in response to 5-fluorouracil in human cancer RKO cells (2007) Clinical Cancer Research, 13 (14), pp. 4245-4251. , http://clincancerres.aacrjournals.org/cgi/reprint/13/14/4245, DOI 10.1158/1078-0432.CCR-06-2890 Sakaguchi, K., Herrera, J.E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C.W., Appella, E., DNA damage activates p53 through a phosphorylation-acetylation cascade (1998) Genes and Development, 12 (18), pp. 2831-2841 Ben Sahra, I., Laurent, K., Giuliano, S., Larbret, F., Ponzio, G., Gounon, P., Targeting cancer cell metabolism: The combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells (2010) Cancer Res, 70, pp. 2465-2475 Brown, J., Effects of 2-deoxyglucose on carbohydrate metablism: Review of the literature and studies in the rat (1962) Metabolism, 11, pp. 1098-1112 McComb, R.B., Yushok, W.D., Metabolism of Ascites Tumor Cells. IV. Enzymatic reactions involved in adenosinetriphosphate degradation induced by 2-deoxyglucose (1964) Cancer Res, 24, pp. 198-205 Liu, B., Fan, Z., Edgerton, S.M., Deng, X.S., Alimova, I.N., Lind, S.E., Metformin induces unique biological and molecular responses in triple negative breast cancer cells (2009) Cell Cycle, 8, pp. 2031-2040 Levine, A.J., p53, the cellular gatekeeper for growth and division (1997) Cell, 88, pp. 323-331 Lane, V.B.D., Levine, A.J., Surfing the p53 network (2000) Nature, 408, pp. 307-310 Faivre, S., Kroemer, G., Raymond, E., Current development of mTOR inhibitors as anticancer agents (2006) Nature Reviews Drug Discovery, 5 (8), pp. 671-688. , DOI 10.1038/nrd2062, PII NRD2062 Guertin, D.A., Sabatini, D.M., An expanding role for mTOR in cancer (2005) Trends in Molecular Medicine, 11 (8), pp. 353-361. , DOI 10.1016/j.molmed.2005.06.007, PII S1471491405001371 Bolster, D.R., Crozier, S.J., Kimball, S.R., Jefferson, L.S., AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling (2002) Journal of Biological Chemistry, 277 (27), pp. 23977-23980. , DOI 10.1074/jbc.C200171200 Yu, K., Toral-Barza, L., Shi, C., Zhang, W.G., Zask, A., Response and determinants of cancer cell susceptibility to PI3K inhibitors: Combined targeting of PI3K and Mek1 as an effective anticancer strategy (2008) Cancer Biol Ther, 7, pp. 307-315 Sanli, T., Rashid, A., Liu, C., Harding, S., Bristow, R.G., Cutz, J.C., Ionizing radiation activates AMP-activated kinase (AMPK): A target for radio-sensitization of human cancer cells Int J Radiat Oncol Biol Phys, 78, pp. 221-229 Jordan, M.A., Wilson, L., Microtubules as a target for anticancer drugs (2004) Nature Reviews Cancer, 4 (4), pp. 253-265 Rieder, C.L., Maiato, H., Stuck in division or passing through: What happens when cells cannot satisfy the spindle assembly checkpoint (2004) Developmental Cell, 7 (5), pp. 637-651. , DOI 10.1016/j.devcel.2004.09.002, PII S1534580704003016 Nakano, A., Kato, H., Watanabe, T., Min, K.D., Yamazaki, S., Asano, Y., AMPK controls the speed of microtubule polymerization and directional cell migration through CLIP-170 phosphorylation Nat Cell Biol, 12, pp. 583-590 Vazquez-Martin, A., Oliveras-Ferraros, C., Menendez, J.A., The active form of the metabolic sensor: AMP-activated protein kinase (AMPK) directly binds the mitotic apparatus and travels from centrosomes to the spindle midzone during mitosis and cytokinesis (2009) Cell Cycle, 8, pp. 2385-2398