dc.creator | Jakelic D. | |
dc.creator | De Moura A.A. | |
dc.date | 2011 | |
dc.date | 2015-06-30T20:43:06Z | |
dc.date | 2015-11-26T14:54:05Z | |
dc.date | 2015-06-30T20:43:06Z | |
dc.date | 2015-11-26T14:54:05Z | |
dc.date.accessioned | 2018-03-28T22:05:56Z | |
dc.date.available | 2018-03-28T22:05:56Z | |
dc.identifier | | |
dc.identifier | International Mathematics Research Notices. , v. 2011, n. 18, p. 4147 - 4199, 2011. | |
dc.identifier | 10737928 | |
dc.identifier | 10.1093/imrn/rnq250 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-80053223454&partnerID=40&md5=976b87ab9276b2060f5e4d7dd8105c84 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/108967 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/108967 | |
dc.identifier | 2-s2.0-80053223454 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1255064 | |
dc.description | We establish several results concerning tensor products, q-characters, and the block decomposition of the category of finite-dimensional representations of quantum affine algebras in the root of unity setting. In the generic case, a Weyl module is isomorphic to a tensor product of fundamental representations and this isomorphism was essential for establishing the block decomposition theorem. This is no longer true in the root of unity setting. We overcome the lack of such a tool by utilizing results on specialization of modules. Furthermore, we establish a sufficient condition for a Weyl module to be a tensor product of fundamental representations and prove that this condition is also necessary when the underlying simple Lie algebra is. We also study the braid group invariance of q-characters of fundamental representations. © 2010 The Author(s). | |
dc.description | 2011 | |
dc.description | 18 | |
dc.description | 4147 | |
dc.description | 4199 | |
dc.description | Abe, Y., Nakashima, T., Evaluation representations of quantum affine algebras at roots of unity (2006) Journal of Mathematical Physics, 47 (8), p. 083514 | |
dc.description | Polo, P.A.H., Kexin, W., Representations of quantum algebras (1991) Inventiones Mathematicae, 104 (1), pp. 1-59 | |
dc.description | Beck, J., Braid group action and quantum affine algebras (1994) Communications in Mathematical Physics, 165 (3), pp. 555-68 | |
dc.description | Beck, J., Chari, V., Pressley, A., An algebraic characterization of the affine canonical basis (1999) Duke Mathematics Journal, 99 (3), pp. 455-87 | |
dc.description | Beck, J., Kac, V.G., Finite-dimensional representations of quantum affine algebras at roots of unity (1996) Journal of the American Mathematical Society, 9 (2), pp. 391-423 | |
dc.description | Beck, J., Nakajima, H., Crystal bases and two-sided cells of quantum affine algebras (2004) Duke Mathematical Journal, 123 (2), pp. 335-402 | |
dc.description | Bouwknegt, P., Pilch, K., On deformed W-algebras and quantum affine algebras (1998) Advances in Theoretical and Mathematical Physics, (2), pp. 357-97 | |
dc.description | Chari, V., On the fermionic formula and the Kirillov-Reshetikhin conjecture (2001) International Mathematics Research Notices, 12, pp. 629-54 | |
dc.description | Chari, V., Braid group actions and tensor products (2002) International Mathematics Research Notices 2002, (7), pp. 357-82 | |
dc.description | Chari, V., Hernandez, D., Beyond Kirillov-Reshetikhin modules (2010) Contemporary Mathematics, 506, pp. 49-81 | |
dc.description | Chari, V., Moura, A.A., Spectral characters of finite-dimensional representations of affine algebras (2004) Journal of Algebra, 279 (2), pp. 820-839. , DOI 10.1016/j.jalgebra.2004.01.015, PII S002186930400105X | |
dc.description | Chari, V., Moura, A.A., Characters and blocks for finite-dimensional representations of quantum affine algebras (2005) International Mathematics Research Notices, (5), pp. 257-298 | |
dc.description | Chari, V., Moura, A.A., Characters of fundamental representations of quantum affine algebras (2006) Acta Applicandae Mathematicae, 90 (1-2), pp. 43-63. , DOI 10.1007/s10440-006-9030-9 | |
dc.description | Chari, V., Pressley, A., Quantum affine algebras (1991) Communications in Mathematical Physics, 142 (2), pp. 261-83 | |
dc.description | Chari, V., Pressley, A., (1994) A Guide to Quantum Groups, , Cambridge, Cambridge University Press | |
dc.description | Chari, V., Pressley, A., Small representations of quantum affine algebras (1994) Letters in Mathematical Physics, 30 (2), pp. 131-45 | |
dc.description | Chari, V., Pressley, A., Minimal affinizations of representations of quantum groups: The simply laced case (1996) Journal of Algebra, 184 (1), pp. 1-30. , DOI 10.1006/jabr.1996.0247 | |
dc.description | Chari, V., Pressley, A., Yangians, integrable quantum systems and Dorey's rule (1996) Communications in Mathematical Physics, 181 (2), pp. 265-302 | |
dc.description | Chari, V., Pressley, A., Quantum affine algebras at roots of unity (1997) Representation Theory, 1, pp. 280-328 | |
dc.description | Chari, V., Pressley, A., Weyl modules for classical and quantum affine algebras (2001) Representation Theory, 5, pp. 191-223 | |
dc.description | Damiani, I., La R-matrice pour les algèbres quantiques de type affine non tordu (1998) Annales Scientifiques de l'Ecole Normale Superieure, 31 (4), pp. 493-523 | |
dc.description | De Concini, C., Hernandez, D., Reshetikhin, N., Geometry of the Analytic Loop Group, , preprint arXiv: 0812.3540 | |
dc.description | Etingof, P.I., Moura, A.A., Elliptic central characters and blocks of finite dimensional representations of quantum affine algebras (2003) Representation Theory, 7, pp. 346-373. , http://www.ams.org/ert/2003-007-16/S1088-4165-03-00201-2/home.html, DOI 10.1090/S1088-4165-03-00201-2, PII S1088416503002012 | |
dc.description | Frenkel, E., Mukhin, E., Combinatorics of q-characters of finite-dimensional representations of quantum affine algebras (2001) Communications in Mathematical Physics, 216 (1), pp. 23-57. , DOI 10.1007/s002200000323 | |
dc.description | Frenkel, E., Mukhin, E., The q-characters at roots of unity (2002) Advances in Mathematics, 171 (1), pp. 139-67 | |
dc.description | Frenkel, E., Reshetikhin, N., The q-characters of representations of quantum affine algebras and deformations of W-algebras (1999) Contemporary Mathematics, 248, pp. 163-205 | |
dc.description | Hernandez, D., Algebraic approach to q, t-characters (2004) Advances in Mathematics, 187 (1), pp. 1-52 | |
dc.description | Hernandez, D., The t-analogs of q-characters at roots of unity for quantum affine algebras and beyond (2004) Journal of Algebra, 279 (2), pp. 514-557. , DOI 10.1016/j.jalgebra.2004.02.022, PII S0021869304001917 | |
dc.description | Hernandez, D., Simple Tensor Products, , preprint arXiv:0907.3002 | |
dc.description | Humphreys, J., Introduction to lie algebras and representation theory (1972) Graduate Texts in Mathematics, 9. , Berlin: Springer | |
dc.description | Humphreys, J., (1990) Reflection Groups and Coxeter Groups, 29. , Cambridge Studies in Advanced Mathematics Cambridge: Cambridge University Press | |
dc.description | Jakelić, D., Moura, A., Finite-dimensional representations of hyper loop algebras (2007) Pacific Journal of Mathematics, 233 (2), pp. 371-402 | |
dc.description | Jakelić, D., Moura, A., On multiplicity problems for finite-dimensional representations of hyper loop algebras (2009) Contemporary Mathematics, 483, pp. 147-59 | |
dc.description | Jakelić, D., Moura, A., Finite-dimensional representations of hyper loop algebras over non-algebraicaly closed fields (2010) Algebras and Representation Theory, 13 (3), pp. 271-301 | |
dc.description | Jakelić, D., Moura, A., On Weyl Modules for Quantum and Hyper Loop Algebras, , Preprint | |
dc.description | Jimbo, M., A q-analogue of U(gl(n+ 1)), Hecke algebra and the Yang-Baxter equation (1986) Letters in Mathematical Physics, 11 (3), pp. 247-52 | |
dc.description | Kashiwara, M., On crystal bases of the q-analogue of universal enveloping algebras (1991) Duke Mathematics Journal, 63 (2), pp. 465-516 | |
dc.description | Kashiwara, M., Crystal bases of modified quantized enveloping algebras (1994) Duke Mathematics Journal, 73 (2), pp. 383-413 | |
dc.description | Lusztig, G., Quantum deformations of certain simple modules over enveloping algebras (1988) Advances in Mathematics, 70 (2), pp. 237-49 | |
dc.description | Lusztig, G., Modular representations and quantum groups (1989) Contemporary Mathematics, 82, pp. 59-77 | |
dc.description | Lusztig, G., (1993) Introduction to Quantum Groups, , Basel: Birkäuser | |
dc.description | Nakajima, H., T-analogs of q-characters of quantum affine algebras of type A n, Dn (2003) Contemporary Mathematics, 325, pp. 141-60 | |
dc.description | Nakajima, H., Quiver varieties and t-analogs of q-characters of quantum affine algebras (2004) Annals of Mathematics, 160 (3), pp. 1057-1097 | |
dc.description | Nakajima, H., T-analogs of Q-characters of Quantum Affine Algebras of Type E 6, E7, E8, , preprint arXiv:math/0606637 | |
dc.description | Varagnolo, M., Vasserot, E., Standard modules of quantum affine algebras (2002) Duke Mathematics Journal, 111 (3), pp. 509-33 | |
dc.language | en | |
dc.publisher | | |
dc.relation | International Mathematics Research Notices | |
dc.rights | fechado | |
dc.source | Scopus | |
dc.title | Tensor Products, Characters, And Blocks Of Finite-dimensional Representations Of Quantum Affine Algebras At Roots Of Unity | |
dc.type | Artículos de revistas | |