Artículos de revistas
Butterfly Scale Form Birefringence Related To Photonics
Registro en:
Micron. , v. 42, n. 8, p. 801 - 807, 2011.
9684328
10.1016/j.micron.2011.04.006
2-s2.0-80051593632
Autor
Vidal B.D.C.
Institución
Resumen
Wings of the butterflies Morpho aega and Eryphanis reevesi were investigated in the present study by fluorescence, polarization and infra-red (IR) spectroscopic microscopy with the aim of identifying the oriented organization of their components and morphological details of their substructures. These wings were found to exhibit a strong iridescent glow depending on the angle of the incident light; their isolated scales exhibited blue fluorescence. Parallel columns or ridges extend from the pad and sockets to the dented apical scale's region, and they are perpendicular to the ribs that connect the columnar ridges. The scales reveal linear dichroism (LD) visually, when attached on the wing matrix or isolated on slides. The LD was inferred to be textural and positive and was also demonstrated with IR microscopy. The scale columns and ribs are birefringent structures. Images obtained before and after birefringence compensation allowed a detailed study of the scale morphology. Form and intrinsic birefringence findings here estimated and discussed in the context of nonlinear optical properties, bring to the level of morphology the state of molecular order and periodicity of the wing structure. FT-IR absorption peaks were found at wavenumbers which correspond to symmetric and asymmetric (-N-H) stretching, symmetric (-C-H) stretching, amide I (-C. O) stretching, amide II(-N-H), and β-linking. Based on LD results obtained with polarized IR the molecular vibrations of the wing scales of M. aega and E. reevesi are assumed to be oriented with respect to the long axis of these structures. © 2011 Elsevier Ltd. 42 8 801 807 Argyros, A., Manos, S., Large, M.C.J., McKenzie, D.R., Cox, G.C., Dwarte, D.M., Electron tomography and computer visualisation of a three-dimensional 'photonic' crystal in a butterfly wing-scale (2002) Micron, 33, pp. 483-487 Bêche, B., Gaviot, E., Matrix formalism to enhance the concept of effective dielectric constant (2003) Opt. Commun., 219, pp. 15-19 Bennet, S., The microscopical investigation of biological materials with polarized light (1967) MacClung's Handbook of Microscopical Technique, pp. 591-677. , Hafner Publ. Co., New York, R.M. Jones (Ed.) Brunner, E., Ehrlich, H., Schupp, P., Hedrich, R., Hunoldt, S., Kammer, M., Machill, S., Born, R., Chitin based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta (2009) J. Struct. Biol., 168, pp. 539-547 Carvalho, H.F., Vidal, B.C., Macromolecular organization of the chitin system of the pen in Loligo brasiliensis (1991) Zool. Jb. Anat., 121, pp. 39-52 Cassim, J.Y., Taylor, E.W., Intrinsic birefringence of poly-γ-benzyl-l-glutamate, a helical polypeptide, and theory of birefringence (1965) Biophys. J., 5, pp. 531-552 Chen, Y., Gu, J.J., Zhu, S.M., Fan, T.X., Zhang, D., Guo, Q.X., Iridescent large-area ZrO2 photonic crystals using butterfly as templates (2009) Appl. Phys. Lett., 94, p. 053901 Diener, J., Künzner, N., Kovalev, D., Gross, E., Timoshenko, V.Y., Polisski, G., Koch, F., Dichroic Bragg reflectors based on birefringent porous silicon (2001) Appl. Phys. Lett., 78, pp. 3887-3889 Dresp, B., Jouventin, P., Langley, K., Ultraviolet reflecting photonic microstructures in the King Penguin beak (2005) Biol. Lett., 1, pp. 310-313 Frey-Wyssling, A., (1948) Submicroscopic Morphology of Protoplasm and its Derivatives, pp. 58-68. , Elsevier Publ. Co., New York/Amsterdam/London/Brussels Golovan, L.A., Ivanov, D.A., Melnikov, V.A., Timoschenko, V.Y., Zheltikov, A.M., Kashkarov, P.K., Petrov, G.I., Yakovlev, V.V., Form birefringence of oxidized porous silicon (2006) Appl. Phys. Lett., 88, p. 241113 Harris, K.D., van Popta, A.C., Sit, J.C., Broer, D.J., Brett, M.J., A birefringent and transparent electrical conductor (2008) Adv. Funct. Mater., 18, pp. 2147-2153 Huang, J.Y., Wang, X.D., Wang, Z.L., Controlled replication of butterfly wings for achieving tunable photonic properties (2006) Nano Lett., 6, pp. 2325-2331 Kotynski, R., Antkowiak, M., Berghmans, F., Thienpont, H., Panajotos, K., Photonic crystal fibers with material anisotropy (2005) Opt. Quantum Electr., 37, pp. 253-264 Kumazawa, K., Tabata, H., A three-dimensional fluorescence analysis of the wing of male Morpho sulkowskyi and Papilio xuthus butterflies (2001) Zool. Sci., 18, pp. 1073-1079 Matèjková-Plskova, J., Shiojiri, S., Shiojiri, M., Fine structures of wing scales in Sasakia charonda butterflies as photonic crystals (2009) J. Microsc. -Oxford, 236, pp. 88-93 Mitrofanov, A.V., Linik, Y.M., Buczynski, R., Pysz, D., Lorenc, D., Bugar, I., Ivanov, A.A., Zheltikov, A.M., Highly birefringent silicate glass photonic-crystal fiber with polarization-controlled frequency-shifted output: a promising fiber light source for nonlinear Raman microspectroscopy (2006) Opt. Exp., 14, pp. 10645-10651 Neale, S.L., Macdonald, M.P., Dholakia, K., Krauss, T.F., All-optical control of microfluidic components using form birefringence (2005) Nat. Mater., 4, pp. 530-532 Neville, A.C., (1975) Biology of the Arthropod Cuticle, pp. 82-88. , Springer-Verlag, New York/Heidelberg/Berlin, 95-96, 179, 336-338 O, B.H., Choi, C.H., Jo, S.B., Lee, M.W., Park, D.G., Kang, B.G., Kim, S.H., Fainman, Y., Novel form birefringence modeling for an ultracompact sensor in porous silicon films using polarization interferometry (2004) IEEE Photon. Technol. Lett., 16, pp. 1546-1548 Pena, A.M., Boulesteix, T., Dartigalongue, T., Schanne-Klein, M.C., Chiroptical effects in the second harmonic signal of collagens I and IV (2005) J. Am. Chem. Soc., 127, pp. 10314-10322 Prum, R., Torres, R., Structural coloration of avian skin: convergent evolution of coherently scattering dermal collagen arrays (2003) J. Exp. Biol., 206, pp. 2409-2429 Prum, R., Quinn, T., Torres, R., Anatomically diverse butterfly scales all produce structural colors by coherent scattering (2006) J. Exp. Biol., 209, pp. 748-765 Shawkey, M.D., Saranathan, V., Pálsdóttir, H., Crum, J., Ellisman, M.H., Auer, M., Prum, R.O., Electron tomography, three-dimensional Fourier analysis and color prediction of a three-dimensional amorphous biophotonic nanostructure (2009) J.R. Soc. Interface, 6, pp. S213-S220 Schmidt, W.J., (1937) Die Doppelbrechung von Karyoplasma, Zytoplasma und Metaplasma, pp. 22-40. , Verlag von Gebrüder Bornträger, Berlin Schmidt, W.J., Keil, A., (1958) Die Gesungen und die Erkrankten Zahngeweve des Menschen und der Wierbeltiere im Polarizationmikroskop, pp. 1-11. , Catl. Hanser Verlag, München Skorig, Y.A., Pestov, A.V., Yatluk, Y., Evaluation of various chitin-glucan derivatives from Aspergillus niger as transition metal adsorbents (2010) Bioresour. Technol., 101, pp. 1769-1775 Sudheesh Kumar, P.T., Abhilash, S., Manzoor, K., Nair, S.V., Tamura, H., Jayakumar, R., Preparation and characterization of novel β-chitin/nanosilver composite for wound dressing applications (2010) Carbohydr. Polym., 80, pp. 761-767 Vidal, B.C., The part played by the mucopolysaccharides in the form birefringence of collagen (1965) Protoplasma, 59, pp. 472-479 Vidal, B.C., The part played by proteoglycans and structural glycoproteins in the macromolecular orientation of collagen bundles (1980) Cell. Mol. Biol., 26, pp. 415-421 Vidal, B.C., Evaluation of carbohydrate role in the molecular order of collagen bundles: microphotometric measurements of textural birefringence (1986) Cell Mol. Biol., 32, pp. 527-535 Vidal, B.C., Image analysis of linear dichroism in collagen-nano-silver complexes (2003) Micr. Anal., 97, pp. 21-23 Vidal, B.C., Form birefringence as applied to biopolymer and Inorganic material supraorganization (2010) Biotechnol. Histochem., 85, pp. 365-378 Vidal, B.C., Carvalho, H.F., Chitin molecular order in the chitinous tendon of the grasshopper Spharagenon bolli (1986) Cell. Mol. Biol., 32, pp. 537-543 Vidal, B.C., Joazeiro, P., Electron microscopic determination of silver incorporation in collagen fibers as a model of organic-metal chiral supramolecular structure with optical anisotropic properties (2002) Micron, 33, pp. 507-509 Vidal, B.C., Mello, M.L.S., Optical anisotropy of collagen fibers of rat calcaneal tendon: an approach to spatially resolved supramolecular organization (2010) Acta Histochem., 112, pp. 53-61 Vidal, B.C., Mello, M.L.S., Godo, C., Caseiro Fo, A.C., Abujadi, J.M., Anisotropic properties of silver plus gold-impregnated collagen bundles: ADB and form birefringence curves (1975) Ann. Histochim., 20, pp. 15-26 Vukusic, P., van Hooper, I., Directionally controlled fluorescence emission in butterflies (2005) Science, 310, p. 1151 Wiener, O., Die Theorie des Mischkörper für das Feld der stationären Strömung erste Abhandlung. Die Mittelwerstaze für Kraft, Polarization und Energie (1912) Ab. Math. Klas. Kongl. Sach. Gesel. Wiss., 23, pp. 509-604 Yokohama, I., Okamoto, K., Noda, J., Fiber-optic polarizing beam splitter employing birefringent-fiber coupler (1985) Electron. Lett., 21, pp. 415-416