dc.creatorRabelo S.C.
dc.creatorCarrere H.
dc.creatorMaciel Filho R.
dc.creatorCosta A.C.
dc.date2011
dc.date2015-06-30T20:41:46Z
dc.date2015-11-26T14:53:44Z
dc.date2015-06-30T20:41:46Z
dc.date2015-11-26T14:53:44Z
dc.date.accessioned2018-03-28T22:05:38Z
dc.date.available2018-03-28T22:05:38Z
dc.identifier
dc.identifierBioresource Technology. , v. 102, n. 17, p. 7887 - 7895, 2011.
dc.identifier9608524
dc.identifier10.1016/j.biortech.2011.05.081
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-79960846416&partnerID=40&md5=871f7a4fb40b1b5e15ba6c88b5432d6c
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108919
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108919
dc.identifier2-s2.0-79960846416
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1255009
dc.descriptionThe potential of biogas production from the residues of second generation bioethanol production was investigated taking into consideration two types of pretreatment: lime or alkaline hydrogen peroxide. Bagasse was pretreated, enzymatically hydrolyzed and the wastes from pretreatment and hydrolysis were used to produce biogas. Results have shown that if pretreatment is carried out at a bagasse concentration of 4% DM, the highest global methane production is obtained with the peroxide pretreatment: 72.1. L. methane/kg. bagasse. The recovery of lignin from the peroxide pretreatment liquor was also the highest, 112.7 ± 0.01 g/kg of bagasse. Evaluation of four different biofuel production scenarios has shown that 63-65% of the energy that would be produced by bagasse incineration can be recovered by combining ethanol production with the combustion of lignin and hydrolysis residues, along with the anaerobic digestion of pretreatment liquors, while only 32-33% of the energy is recovered by bioethanol production alone. © 2011 Elsevier Ltd.
dc.description102
dc.description17
dc.description7887
dc.description7895
dc.descriptionAndrade, R.R., Rivera, E.A.C., Atala, D.I.P., Maugeri Filho, F., Maciel Filho, R., Costa, A.C., Development of extractive processes and robust mathematical model for bioethanol production (2009) Bioethanol: Production, pp. 75-92. , Benefits and Economics. Nova Science Publishers, New York, B.E. Jason (Ed.)
dc.descriptionAngelidaki, I., Sanders, W., Assessment of the anaerobic biodegradability of macropollutants (2004) Rev. Environ. Sci. Biotechnol., 3, pp. 117-129
dc.description(1995), APHA, Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, New York, USABaker, A.J., (1983), pp. 14-19. , Wood fuel properties and fuel products from woods. In: Fuel Wood Management and Utilization Seminar: Proceedings, November 9-11, 1982. Michigan State Univ., East Lansing, MIBauer, A., Mayr, H., Hopfner-Sixt, K., Amon, T., Detailed monitoring of two biogas plants and mechanical solid-liquid separation of fermentation residues (2009) J. Biotechnol., 142, pp. 56-63
dc.descriptionCherubini, F., The biorefinery concept: using biomass instead of oil for producing energy and chemicals (2010) Energy Convers. Manag., 51, pp. 1412-1421
dc.descriptionDantas, T.L.P., (2005), Decomposition of hydrogen peroxide in a hybrid catalyst and advanced oxidation of textile wastewater by Fenton reagent modified. Master of Science Thesis. Federal University of Santa Catarina, Brazil (in Portuguese)Dias, M.O.S., Cunha, M.P.C., Maciel Filho, R., Bonomi, A., Jesus, C.D.F., Rossell, C., Rossell, E.V., in press. Simulation of integrated first and second generation bioethanol production from sugarcane: comparison between different biomass pretreatment methods. J. Ind. Microbiol. BiotechnolFuentes, L.L.G., Rabelo, S.C., Maciel Filho, R., Costa, A.C., Kinetics of lime pretreatment of sugarcane bagasse to enhance enzymatic hydrolysis (2011) Appl. Biochem. Biotechnol., 163, pp. 612-625
dc.descriptionGhose, T.K., Measurement of cellulase activities (1987) Pure Appl. Chem., 59, pp. 257-268
dc.descriptionIbrahim, M.N.M., Chuah, S.B., Characterization of lignin precipitated from the soda black liquor of oil palm empty fruit bunch fibers by various mineral acids (2004) AJSTD, 21 (1), pp. 57-67
dc.descriptionKaar, W.E., Holtzapple, M.T., Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover (2000) Biomass Bioenerg., 18, pp. 189-199
dc.descriptionKaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept (2009) Bioresour. Technol., 100, pp. 2562-2568
dc.descriptionKreuger, E., Sipos, B., Zacchi, G., Svensson, S.E., Björnsson, L., Bioconversion of industrial hemp to ethanol and methane: the benefits of steam pretreatment and co-production (2011) Bioresour. Technol., 102, pp. 3457-3465
dc.descriptionLamo, P., (1991) Methane-producing system through industrial wastewater treatment, , METHAX/BIOPAQ-CODISTIL, Piracicaba, SP, (in Portuguese)
dc.descriptionLaser, M., Jin, H., Jayawardhana, K., Dale, B.E., Lynd, L.R., Projected mature technology scenarios for conversion of cellulosic biomass to ethanol with coproduction thermochemical fuels, power, and/or animal feed protein (2009) Biofuels, Bioprod. Bioref., 3, pp. 231-246
dc.descriptionLettinga, G., Haandel, A.C.V., Anaerobic digestion for energy production and environmental protection (1993) Renewable Energy Sources for Fuels and Electricity, pp. 817-840. , Island Press, Washington, T.B. Johansson, H. Kelly, A.K.N. Reddy, R.H. Williams (Eds.)
dc.descriptionLin, S.H., Lo, C.C., Fenton process for treatment of desizing wastewater (1997) Water Res., 31, pp. 2050-2056
dc.descriptionLiu, D., Zeng, R., Angelidaki, I., Hydrogen and methane production from household solid waste in the two-stage fermentation process (2006) Water Res., 40 (11), pp. 2230-2236
dc.descriptionLu, Y., Lai, Q., Zhang, C., Zhao, H., Ma, K., Zhao, X., Chen, H., Xing, X.H., Characteristics of hydrogen and methane production from cornstalks by an augmented two- or three-stage anaerobic fermentation process (2009) Bioresour. Technol., 100, pp. 2889-2895
dc.descriptionLuo, G., Talebnia, F., Karakashev, D., Xie, L., Zhou, Q., Angelidaki, I., Enhanced bioenergy recovery from rapeseed plant in a biorefinery concept (2011) Bioresour. Technol., 102, pp. 1433-1439
dc.descriptionMargeot, A., Han-Hangerdal, B., Edlund, M., Slade, R., Monot, F., New improvements for lignocellulosic ethanol (2009) Curr. Opin. Biotechnol., 20, pp. 372-380
dc.descriptionMosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., Features of promising technologies for pretreatment of lignocellulosic biomass (2005) Bioresour. Technol., 96, pp. 673-686
dc.descriptionRabelo, S.C., Maciel Filho, R., Costa, A.C., A comparison between lime and alkaline hydrogen peroxide pretreatments of sugarcane bagasse for ethanol production (2008) Appl. Biochem. Biotechnol., 144, pp. 87-100
dc.descriptionRevista Pesquisa FAPESP: Política de C & T, 2007. Cellulose ethanol: sugarcane bagasse and straw are quoted to increase ethanol production. In: Ereno, D. (Ed.), 133rd ed. Brazil (in Portuguese)Rivera, E.C., Rabelo, S.C., Garcia, D.R., Maciel Filho, R., Costa, A.C., Enzymatic hydrolysis of sugarcane bagasse for bioethanol production: determining optimal enzyme loading using neural networks (2010) J. Chem. Technol. Biot., 85, pp. 983-992
dc.descriptionSalomon, K.R., Lora, E.E.S., Estimate of the electric energy generating potential for different sources of biogas in Brazil (2009) Biomass Bioenerg., 33, pp. 1101-1107
dc.descriptionSassner, P., Martensson, C.G., Galbe, M., Zacchi, G., Steam pretreatment of H 2SO 4-impregnated salix for the production of bioethanol (2008) Bioresour. Technol., 99, pp. 137-145
dc.descriptionSluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., (2008), a. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Midwest Research Institute, Golden, CO. NREL/TP-510-42618Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., (2008), b. Determination of Sugars, By-products, and Degradation Products in Liquid Fraction Process Samples. National Renewable Energy Laboratory, Midwest Research Institute, Golden, CO. NREL/TP-510-42623Talinli, I., Anderson, G.K., Interference of hydrogen peroxide on the standard COD test (1992) Water Res., 26, pp. 107-110
dc.descriptionhttp://english.unica.com.br/noticias/show.asp?nwsCode=%7BB6F7067D-DF2A-4CFD-B1A2-8FFAA32E6D60%7D, UNICA (Sao Paulo Sugarcane Agroindustry Union), 2011. Projected sugarcane crushing for 2011/2012 harvest in South-Central Brazil set at 568.5 million tons. Available at Last accessed: 01-04-2011Van Soest, P.J., Use of detergent in the analysis of fibrous feeds. A rapid method for the determination of fibre and lignin (1963) J. Assoc. Office Anal. Chem., 46 (5), pp. 829-835
dc.descriptionWood, T.M., Bhat, K.M., Methods for measuring cellulase activities (1988) Methods in Enzymology, 160, pp. 81-112. , Academic Press, San Diego, CA
dc.descriptionWyman, C.E., Dale, B.E., Elander, R.T., Holtzapple, M., Ladisch, M.R., Lee, Y.Y., Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover (2005) Bioresour. Technol., 96, pp. 2026-2032
dc.languageen
dc.publisher
dc.relationBioresource Technology
dc.rightsfechado
dc.sourceScopus
dc.titleProduction Of Bioethanol, Methane And Heat From Sugarcane Bagasse In A Biorefinery Concept
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución