dc.creatorAutreto P.A.S.
dc.creatorFlores M.Z.
dc.creatorLegoas S.B.
dc.creatorSantos R.P.B.
dc.creatorGalvao D.S.
dc.date2011
dc.date2015-06-30T20:38:12Z
dc.date2015-11-26T14:52:06Z
dc.date2015-06-30T20:38:12Z
dc.date2015-11-26T14:52:06Z
dc.date.accessioned2018-03-28T22:04:05Z
dc.date.available2018-03-28T22:04:05Z
dc.identifier9781605112619
dc.identifierMaterials Research Society Symposium Proceedings. , v. 1284, n. , p. 31 - 36, 2011.
dc.identifier2729172
dc.identifier10.1557/opl.2011.641
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80053244727&partnerID=40&md5=a989603330513a25527eff179d0e0358
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108730
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108730
dc.identifier2-s2.0-80053244727
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254729
dc.descriptionRecently, Elias et al. (Science 323, 610 (2009).) reported the experimental realization of the formation of graphane from hydrogenation of graphene membranes under cold plasma exposure. In graphane, the carbon-carbon bonds are in sp 3 configuration, as opposed to the sp 2 hybridization of graphene, and the C-H bonds exhibit an alternating pattern (up and down with relation to the plane defined by the carbon atoms). In this work we have investigated, using reactive molecular dynamics simulations, the role of H frustration (breaking the H atoms up and down alternating pattern) in graphane-like structures. Our results show that a significant percentage of uncorrelated H frustrated domains are formed in the early stages of the hydrogenation process, leading to membrane shrinkage and extensive membrane corrugations. This might explain the significant broad distribution of values of lattice parameter experimentally observed. For comparison purposes we have also analyzed fluorinated graphane-like structures. Our results show that similarly to H, F atoms also create significant uncorrelated frustrated domains on graphene membranes. © 2011 Materials Research Society.
dc.description1284
dc.description
dc.description31
dc.description36
dc.descriptionPeng, H., (2008) Phys. Rev. Lett., 101, p. 145501
dc.descriptionNovoselov, K.S., (2004) Science, 306, p. 666
dc.descriptionCheng, S.H., (2010) Phys. Rev. B, 81, p. 205435
dc.descriptionF. Withers, M. Duboist, and A.K. Savchenko, arxiv:1005.3474v1 (2010)Sofo, J., Chaudhari, A., Barber, G., (2007) Phys. Rev. B, 75, p. 153401
dc.descriptionRyu, S., (2008) Nano Lett., 8, p. 4597
dc.descriptionElias, D., (2009) Science, 323, p. 610
dc.descriptionSofo, J.O., Chaudhari, A.S., Barber, G.D., (2007) Phys. Rev. B, 75, p. 153401
dc.descriptionLueking, D., (2006) J. Am. Chem. Soc., 128, p. 7758
dc.descriptionN. R. Ray, A. K. Srivastava, and, R. Grotzsche, arXiv:0802.3998v1 (2008)O. Leenaerts, H. Peelaers,A. D. Hernandez-Nieves, B. Partoens,and F. M. Peeters, arxiv:1009.3847v1 (2010)Cheng, S.-H., Zou, K., Okino, F., Gutierrez, H.R., Gupta, A., Shen, N., Eklund, P.C., Zhu, J., (2010) Phys. Rev. B, 81, p. 205435
dc.descriptionNair, R.R., Small, , in press, DOI: 10.1002/smll.201001555
dc.descriptionRobinson, J.T., Nano Lett., , in press, DOI: 10.1021/n1101437p
dc.descriptionVan Duin, A.C.T., Dasgupta, S., Lorant, F., Goddard III, W.A., (2001) J. Phys. Chem. A, 105, p. 9396
dc.descriptionVan Duin, A.C.T., Damste, J.S.S., (2003) Org. Geochem., 34, p. 515
dc.descriptionChenoweth, K., Van Duin, A.C.T., Goddard III, W.A., (2008) J. Phys. Chem. A, 112, p. 1040
dc.descriptionhttp://lammps.sandia.gov/Flores, M.Z.S., Autreto, P.A.S., Legoas, S.B., Galvao, D.S., (2009) Nanotechnology, 20, p. 465704
dc.descriptionSantos, R.B.P., Autreto, P.A.S., Legoas, S.B., Galvão, D.S., to be published
dc.languageen
dc.publisher
dc.relationMaterials Research Society Symposium Proceedings
dc.rightsfechado
dc.sourceScopus
dc.titleA Fully Atomistic Reactive Molecular Dynamics Study On The Formation Of Graphane From Graphene Hydrogenated Membranes
dc.typeActas de congresos


Este ítem pertenece a la siguiente institución