dc.creatorKrueger-Beck E.
dc.creatorScheeren E.M.
dc.creatorNeto G.N.N.
dc.creatorda Silveira Nantes Button V.L.
dc.creatorNohama P.
dc.date2011
dc.date2015-06-30T20:36:38Z
dc.date2015-11-26T14:51:57Z
dc.date2015-06-30T20:36:38Z
dc.date2015-11-26T14:51:57Z
dc.date.accessioned2018-03-28T22:03:50Z
dc.date.available2018-03-28T22:03:50Z
dc.identifier
dc.identifierRevista Neurociencias. , v. 19, n. 3, p. 530 - 541, 2011.
dc.identifier1043579
dc.identifier
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80755189240&partnerID=40&md5=7ac8713d9e754d006c1a6dac4253ff77
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108612
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108612
dc.identifier2-s2.0-80755189240
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254665
dc.descriptionDifferent regions of the central nervous system activate the neuromuscular system. Nowadays, artificial systems are employed to imitate physiological tasks lost due to neurological injuries. The electrical stimulation of in vivo human tissues, as a way of treatment, has been developed by means of research and technological enhancements. People who have suffered spinal cord injury can lose partial or total motor function. The electrical stimulation of neuromuscular tissue generates artificial movements that can afford long term health improvements by means of neuronal plasticity. Functional electrical stimulation can use diverse parameters, electrodes and application sites in the body. When the adjustments and corrections of stimulatory parameters are performed manually, the system is called open loop control; whereas when it is automatic, the system is closed-loop control. Both ways (open- and closed-loop) contribute to physical rehabilitation of spinal cord injury patients. Closed-loop control systems present advantages in comparison to open-loop systems like automatic correction of electrical stimulation parameters. Therefore, with the development of artificial motor control strategies and the creation of user-friendly interfaces, the activation of software and hardware for producing movements artificially can be performed by the users of the system (spinal cord injury patients), resembling the human physiological system.
dc.description19
dc.description3
dc.description530
dc.description541
dc.descriptionFodstad, H., Hariz, M., Electricity in the treatment of nervous system disease (2007) Acta Neurochir Suppl, 97, p. 11. , http://dx.doi.org/10.1007/978-3-211-33079-1_2
dc.descriptionPopovic, M.R., Thrasher, T.A., Neuroprostheses (2004) Encyclopedia of Biomaterials and Biomedical Engineering, pp. 1056-1065. , In: Bowlin GL, Wnek G, eds, New York: Informa Healthcare
dc.descriptionGalvani, L., De viribus electricitatis in motu musculari commentarius (1791) Bon Sci Art Inst Acad Comm, pp. 363-418
dc.descriptionVerkhratsky, A., Krishtal, O.A., Petersen, O.H., From Galvani to patch clamp: The development of electrophysiology (2006) Pflugers Arch - Eur J Physiol, 453, pp. 233-247
dc.descriptionDuchenne, G.B., (1855) De L'Electrisation Localisee Et De Son Application a La Pathologie Et a La Therapeutique, p. 900. , Paris: J-B Baillière
dc.descriptionDilorenzo, D.J., Bronzino, J.D., (2007) Neuroengineering, p. 408. , http://dx.doi.org/10.1201/9780849381850, Boca Raton: CRC Press
dc.descriptionHe, B., (2005) Neural Engineering, p. 488. , http://dx.doi.org/10.1007/b112182, Dordrecht: Kluwer/Plenum
dc.descriptionDeluze, C., Bosia, L., Zirbs, A., Chantraine, A., Vischer, T.L., Electroacupuncture in fibromyalgia: Results of a controlled trial (1992) Br Med J, 305, pp. 1249-1252. , http://dx.doi.org/10.1136/bmj.305.6864.1249
dc.descriptionSong, J.W., Yang, L.J., Russell, S.M., Peripheral nerve: What's new in basic science laboratories (2009) Neurosurg Clin N Am, 20, pp. 121-131. , http://dx.doi.org/10.1016/j.nec.2008.07.026
dc.descriptionPopovic, M.R., Curt, A., Keller, T., Dietz, V., Functional electrical stimulation for grasping and walking: Indications and limitations (2001) Spinal Cord, 39, pp. 403-412. , http://dx.doi.org/10.1038/sj.sc.3101191
dc.descriptionO'Donovan, K.J., O'Keeffe, D.T., (2001) Movement Monitoring FES System, pp. 1-3. , Annual Conference of the International Functional Electrical Stimulation Society, Cleveland
dc.descriptionGraupe, D., Kohn, K.H., (1994) Functional Electrical Stimulation for Ambulation by Paraplegics: Twelve Years of Clinical Observations and System Studies, p. 194. , Malabar: Krieger Publishing Company
dc.descriptionIsakov, E., Mizrahi, J., Najenson, T., Biomechanical and physiological evaluation of FES-activated paraplegic patients (1986) J Rehabil Res Dev, 23, pp. 9-19
dc.descriptionMcNeil, C.J., Murray, B.J., Rice, C.L., Differential changes in muscle oxygenation between voluntary and stimulated isometric fatigue of human dorsiflexors (2006) J Appl Physiol, 100, pp. 890-895. , http://dx.doi.org/10.1152/japplphysiol.00921.2005
dc.descriptionHamada, T., Hayashi, T., Kimura, T., Nakao, K., Moritani, T., Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake (2004) J Appl Physiol, 96, pp. 911-916. , http://dx.doi.org/10.1152/japplphysiol.00664.2003
dc.descriptionPackman-Braun, R., Relationship between functional electrical stimulation duty cycle and fatigue in wrist extensor muscles of patients with hemiparesis (1988) Phys Ther, 68, pp. 51-56
dc.descriptionThorsen, R., Spadone, R., Ferrarin, M., A pilot study of myoelectrically controlled FES of upper extremity (2001) IEEE Trans Neural Syst Rehabil Eng, 9, pp. 161-168. , http://dx.doi.org/10.1109/7333.928576
dc.descriptionHoshimiya, N., Naito, A., Yajima, M., Handa, Y., A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: A respiration-controlled system for multijoint upper extremity (1989) IEEE Trans Biomed Eng, 36, pp. 754-760. , http://dx.doi.org/10.1109/10.32108
dc.descriptionCrago, P.E., Memberg, W.D., Usey, M.K., Keith, M.W., Kirsch, R.F., Chapman, G.J., An elbow extension neuroprosthesis for individuals with tetraplegia (1998) IEEE Trans Rehabil Eng, 6, pp. 1-6. , http://dx.doi.org/10.1109/86.662614
dc.descriptionKilgore, K.L., Hart, R.L., Montague, F.W., Bryden, A.M., Keith, M.W., Hoyen, H.A., An implanted myoelectrically-controlled neuroprosthesis for upper extremity function in spinal cord injury (2006) Conf Proc IEEE Eng Med Biol Soc, 1, pp. 1630-1633. , http://dx.doi.org/10.1109/IEMBS.2006.259939
dc.descriptionMaynard, F.M., Bracken, M.B., Creasey, G., Ditunno, J.F., Donovan, W.H., Ducker, T.B., International standards for neurological and functional classification of spinal cord injury (1997) Spinal Cord, 35, pp. 266-274. , http://dx.doi.org/10.1038/sj.sc.3100432
dc.descriptionBurt, A.A., The epidemiology, natural history and prognosis of spinal cord injury (2004) Curr Orthop, 18, pp. 26-32. , http://dx.doi.org/10.1016/j.cuor.2004.01.001
dc.description(2010) Lesão Medular: Principais Causas De Lesão Medular Traumática (Endereço Na Internet), , http://www.sarah.br/paginas/doencas/po/p_08_lesao_medular.htm, Brasília: SARAH - Rede Sarah Kubitschek de Hospitais, atualizado em: 01/2010
dc.descriptionacessado em: 01, Disponível em
dc.descriptionPetrofsky, J.S., Electrical stimulation: Neurophysiological basis and application (2004) Basic Appl Myol, 14, pp. 205-213
dc.descriptionVenkatasubramanian, G., Jung, R., Sweeney, J.D., Functional Electrical Stimulation (2006) Encyclopedia of Medical Devices and Instrumentation, pp. 347-366. , In: Webster JG, ed., 2 ed. New York, NY: John Wiley & Sons
dc.descriptionAgne, J.E., (2005) Eletroterapia: Teoria E Prática, p. 336. , Santa Maria: Orium
dc.descriptionHatzis, A., Stranjalis, G., Megapanos, C., Sdrolias, P.G., Panourias, I.G., Sakas, D.E., The current range of neuromodulatory devices and related technologies (2007) Acta Neurochir Suppl, 97, pp. 21-29. , http://dx.doi.org/10.1007/978-3-211-33079-1_3
dc.descriptionWard, A.R., Shkuratova, N., Russian electrical stimulation: The early experiments (2002) Phys Ther, 82, p. 1019
dc.descriptionAudu, M., To, C., Kobetic, R., Triolo, R., Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia (2010) IEEE Trans Neural Syst Rehabil Eng, , http://dx.doi.org/10.1109/TNSRE.2010.2047594, In Press
dc.descriptionTo, C.S., Kirsch, R.F., Kobetic, R., Triolo, R.J., Simulation of a functional neuromuscular stimulation powered mechanical gait orthosis with coordinated joint locking (2005) IEEE Trans Neural Syst Rehabil Eng, 13, pp. 227-235. , http://dx.doi.org/10.1109/TNSRE.2005.847384
dc.descriptionMarsolais, E.B., Kobetic, R., Functional electrical stimulation for walking in paraplegia (1987) J Bone Joint Surg, 69, pp. 728-733
dc.descriptionThrasher, A., Graham, G.M., Popovic, M.R., Reducing muscle fatigue due to functional electrical stimulation using random modulation of stimulation parameters (2005) Artif Organs, 29, pp. 453-458. , http://dx.doi.org/10.1111/j.1525-1594.2005.29076.x
dc.descriptionBaker, L.L., Bowman, B.R., McNeal, D.R., Effects of waveform on comfort during neuromuscular electrical stimulation (1988) Clin Orthop Relat Res, 233, pp. 75-85
dc.descriptionRabischong, E., Surface action potentials related to torque output in paraplegics' electrically stimulated quadriceps muscle (1996) Med Eng Phys, 18, pp. 538-547. , http://dx.doi.org/10.1016/1350-4533(96)00001-X
dc.descriptionRooney, J.G., Currier, D.P., Nitz, A.J., Effect of variation in the burst and carrier frequency modes of neuromuscular electrical stimulation on pain perception of healthy subjects (1992) Phys Ther, 72, pp. 800-806
dc.descriptionGeddes, L.A., Baker, L.E., (1989) Principles of Applied Biomedical Instrumentation, p. 961. , New York: Wiley-Interscience, 3 Ed
dc.descriptionBronzino, J.D., (1992) Management of Medical Technology: A Primer for Clinical Engineers, p. 451. , Boston: Butterworth-Heinemann
dc.descriptionMarsolais, E.B., Kobetic, R., Development of a practical electrical stimulation system for restoring gait in the paralyzed patient (1988) Clin Orthop Relat Res, 233, pp. 64-74
dc.descriptionShimada, Y., Sato, K., Kagaya, H., Konishi, N., Miyamoto, S., Matsunaga, T., Clinical use of percutaneous intramuscular electrodes for functional electrical stimulation (1996) Arch Phys Med Rehabil, 77, pp. 1014-1018. , http://dx.doi.org/10.1016/S0003-9993(96)90061-1
dc.descriptionOrizio, C., Gobbo, M., Diemont, B., Changes of the force-frequency relationship in human tibialis anterior at fatigue (2004) J Electromyogr Kinesiol, 14, pp. 523-530. , http://dx.doi.org/10.1016/j.jelekin.2004.03.009
dc.descriptionCastro, M.J., Apple, D.F., Staron, R.S., Campos, G.E.R., Dudley, G.A., Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury (1999) J Appl Physiol, 86, pp. 350-358
dc.descriptionValenga, M.H., Jorge, R.F., dos Santos, A., Schneider, B., Nohama, P., Sistema de estimulação elétrica gatilhado por sinal respiratório. 21o Congresso Brasileiro de Engenharia Biomédica (2008) Salvador, pp. 495-498
dc.descriptionBear, M.F., Connors, B.W., Paradiso, M.A., (2002) Neurociências: Desvendando O Sistema Nervoso, p. 855. , 2 ed. Porto Alegre: Artmed
dc.descriptionMachado, A.B.M., (2006) Neuroanatomia Funcional, p. 363. , 2ed. São Paulo: Atheneu
dc.descriptionKandel, E.R., Jessell, T.M., Schwartz, J.H., (1991) Principles of Neural Science, p. 1138. , 3 ed. New York: Elsevier
dc.descriptionTonet, O., Marinelli, M., Citi, L., Rossini, P.M., Rossini, L., Megali, G., Defining brain-machine interface applications by matching interface performance with device requirements (2008) J Neurosci Methods, 167, pp. 91-104. , http://dx.doi.org/10.1016/j.jneumeth.2007.03.015
dc.descriptionKandel, E.R., Jessell, T.M., Schwartz, J.H., (1991) Principles of Neural Science, p. 1137. , 3 ed. New York: Elsevier
dc.descriptionGraziano, M.S.A., Feedback remapping and the cortical control of movement (2006) Motor Control and Learning, pp. 97-104. , http://dx.doi.org/10.1007/0-387-28287-4_9, In: Latash ML, Lestienne F, New York: Springer
dc.descriptionKnikou, M., Conway, B.A., Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury (2005) Spinal Cord, 43, pp. 640-648. , http://dx.doi.org/10.1038/sj.sc.3101772
dc.descriptionPierrot-Deseilligny, E., Burke, D.C., (2005) The Circuitry of the Human Spinal Cord: Its Role in Motor Control and Movement Disorders, p. 642. , http://dx.doi.org/10.1017/CBO9780511545047, Cambridge: Univ Pr
dc.descriptionLoeb, G.E., Learning from the spinal cord (2001) J Physiol, 533, pp. 111-117. , http://dx.doi.org/10.1111/j.1469-7793.2001.0111b.x
dc.descriptionKern, H., Stramare, R., Martino, L., Gargiulo, P., Carraro, U., Permanent LMN denervation of human skeletal muscle and recovery by hb FES: Management and monitoring (2010) Eur J Translat Myol, 20, pp. 91-104
dc.descriptionDietz, V., Harkema, S.J., Locomotor activity in spinal cord-injured persons (2004) J Appl Physiol, 96, pp. 1954-1960. , http://dx.doi.org/10.1152/japplphysiol.00942.2003
dc.descriptionThrasher, T.A., Flett, H.M., Popovic, M.R., Gait training regimen for incomplete spinal cord injury using functional electrical stimulation (2006) Spinal Cord, 44, pp. 357-361. , http://dx.doi.org/10.1038/sj.sc.3101864
dc.descriptionVanderthommen, M., Duchateau, J., Electrical stimulation as a modality to improve performance of the neuromuscular system (2007) Exerc Sport Sci Rev, 35, pp. 180-185. , http://dx.doi.org/10.1097/jes.0b013e318156e785
dc.descriptionHigbie, E.J., Cureton, K.J., Warren Iii, G.L., Prior, B.M., Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation (1996) J Appl Physiol, 81, pp. 2173-2181
dc.descriptionButler, D.S., (2003) Mobilização Do Sistema Nervoso, p. 270. , Barueri: Manole
dc.descriptionRushton, D.N., Functional electrical stimulation and rehabilitation - an hypothesis (2003) Med Eng Phys, 25, pp. 75-78. , http://dx.doi.org/10.1016/S1350-4533(02)00040-1
dc.descriptionSheffler, L.R., Chae, J., Neuromuscular electrical stimulation in neurorehabilitation (2007) Muscle Nerve, 35, pp. 562-590. , http://dx.doi.org/10.1002/mus.20758
dc.descriptionLippold, O.C.J., Nicholls, J.G., Redfearn, J.W.T., Electrical and mechanical factors in the adaptation of a mammalian muscle spindle (1960) J Physiol, 153, pp. 209-217
dc.descriptionLieber, R.L., Kelly, M.J., Torque history of electrically stimulated human quadriceps: Implications for stimulation therapy (1993) J Orthop Res, 11, pp. 131-141. , http://dx.doi.org/10.1002/jor.1100110115
dc.descriptionRushton, D.N., Functional electrical stimulation (1997) Physiol Meas, 18, pp. 241-276. , http://dx.doi.org/10.1088/0967-3334/18/4/001
dc.descriptionDietz, V., Nakazawa, K., Wirz, M., Erni, T., Level of spinal cord lesion determines locomotor activity in spinal man (1999) Exp Brain Res, 128, pp. 405-409. , http://dx.doi.org/10.1007/s002210050861
dc.descriptionDonaldson, N., Yu, C.H., A strategy used by paraplegics to stand up using FES (1998) IEEE Trans Rehabil Eng, 6, pp. 162-167. , http://dx.doi.org/10.1109/86.681181
dc.descriptionGollee, H., Hunt, K.J., Wood, D.E., New results in feedback control of unsupported standing in paraplegia (2004) IEEE Trans Neural Syst Rehabil Eng, 12, pp. 73-80. , http://dx.doi.org/10.1109/TNSRE.2003.822765
dc.descriptionRueterbories, J., Spaich, E.G., Larsen, B., Andersen, O.K., Methods for gait event detection and analysis in ambulatory systems (2010) Med Eng Phys, 32, pp. 545-552. , http://dx.doi.org/10.1016/j.medengphy.2010.03.007
dc.descriptionBachschmidt, R.A., Harris, G.F., Simoneau, G.G., Walker-assisted gait in rehabilitation: A study of biomechanics andinstrumentation (2001) IEEE Trans Neural Syst Rehabil Eng, 9, pp. 96-105. , http://dx.doi.org/10.1109/7333.918282
dc.descriptionMatsunaga, T., Shimada, Y., Sato, K., Muscle fatigue from intermittent stimulation with low and high frequency electrical pulses (1999) Arch Phys Med Rehabil, 80, pp. 48-53. , http://dx.doi.org/10.1016/S0003-9993(99)90306-4
dc.descriptionMcAndrew, D.J., Rosser, N.A.D., Brown, J.M.M., Mechanomyographic measures of muscle contractile properties are influenced by the duration of the stimulatory pulse (2006) J Appl Res, 6, pp. 142-152
dc.descriptionKrueger, E., Scheeren, E., Chu, G.F.D., Nogueira-Neto, G.N., Button, V., Mechanomyography Analysis With 0.2 S and 1.0 S Time Delay After Onset of Contraction (2010) BIOSTEC 2010: 3rd International Joint Conference on Biomedical Engineering Systems and Technologies, pp. 296-299. , Valência
dc.descriptionZhang, Y., Frank, C.B., Rangayyan, R.M., Bell, G.D., Relationships of the vibromyogram to the surface electromyogram of the human rectus femoris muscle during voluntary isometric contraction (1996) J Rehabil Res Dev, 33, pp. 395-403
dc.descriptionNogueira-Neto, G.N., Müller, R.W., Salles, F.A., Nohama, P., Button, V.L.S., (2008) Mechanomyographic Sensor: A Triaxial Accelerometry Approach, pp. 176-179. , International Joint Conference on Biomedical Engineering Systems and Technology, Funchal
dc.descriptionSeki, K., Ogura, T., Sato, M., Ichie, M., Changes of the evoked mechanomyogram during electrical stimulation (2003) Annual Conference of the International Functional Electrical Stimulation Society, , Brisbane
dc.descriptionOrizio, C., Diemont, B., Esposito, F., Alfonsi, E., Parrinello, G., Moglia, A., Surface mechanomyogram reflects the changes in the mechanical properties of muscle at fatigue (1999) Eur J Appl Physiol, 80, pp. 276-284. , http://dx.doi.org/10.1007/s004210050593
dc.descriptionKrueger-Beck, E., Scheeren, E., Nogueira-Neto, G.N., Button, V., Nohama, P., Mechanomyographic Response during FES in Healthy and Paraplegic Subjects (2010) 32nd Annual International Conference of the IEEE EMBS
dc.descriptionBuenos Aires, pp. 626-629
dc.descriptionKrueger-Beck, E., Scheeren, E., Nogueira-Neto, G.N., Button, V., Nohama, P., Optimal FES Parameters Based on Mechanomyographic Efficiency Index (2010) 32nd Annual International Conference of the IEEE EMBS, pp. 1378-1381. , Buenos Aires
dc.descriptionJezernik, S., Wassink, R.G.V., Keller, T., Sliding mode closed-loop control of FES: Controlling the shank movement (2004) IEEE Trans Biomed Eng, 51, pp. 263-272. , http://dx.doi.org/10.1109/TBME.2003.820393
dc.descriptionKurosawa, K., Futami, R., Watanabe, T., Hoshimiya, N., Joint angle control by FES using a feedback error learning controller (2005) IEEE Trans Neural Syst Rehabil Eng, 13, pp. 359-371. , http://dx.doi.org/10.1109/TNSRE.2005.847355
dc.descriptionAbbas, J.J., Triolo, R.J., Experimental evaluation of an adaptive feedforward controller foruse in functional neuromuscular stimulation systems (1997) IEEE Trans Rehabil Eng, 5, pp. 12-22. , http://dx.doi.org/10.1109/86.559345
dc.descriptionZhang, D., Zhu, K., Model and control of the locomotion of a biomimic musculoskeletal biped (2006) Artif Life Robotics, 10, pp. 91-95. , http://dx.doi.org/10.1007/s10015-005-0369-1
dc.descriptionDavoodi, R., Andrews, B.J., Fuzzy logic control of FES rowing exercise in paraplegia (2004) IEEE Trans Biomed Eng, 51, pp. 541-543. , http://dx.doi.org/10.1109/TBME.2003.821043
dc.descriptionPai, Y.C., Wening, J.D., Runtz, E.F., Iqbal, K., Pavol, M.J., Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults (2003) J Neurophysiol, 90, pp. 755-762. , http://dx.doi.org/10.1152/jn.01118.2002
dc.descriptionPatil, P.G., Carmena, J.M., Nicolelis, M.A.L., Turner, D.A., Ensemble recordings of human subcortical neurons as a source of motor control signals for a brainmachine interface (2004) Neurosurgery, 55, pp. 27-38
dc.descriptionTonet, O., Marinelli, M., Citi, L., Rossini, P.M., Rossini, L., Megali, G., Defining brain-machine interface applications by matching interface performance with device requirements (2008) J Neurosci Method, 167, pp. 91-104. , http://dx.doi.org/10.1016/j.jneumeth.2007.03.015
dc.descriptionTaylor, P.N., Burridge, J.H., Dunkerley, A.L., Lamb, A., Wood, D.E., Norton, J.A., Patients' perceptions of the Odstock Dropped Foot Stimulator (ODFS) (1999) Clin Rehabil, 13, pp. 439-446. , http://dx.doi.org/10.1191/026921599677086409
dc.descriptionFujita, K., Handa, Y., Hoshimiya, N., Ichie, M., Stimulus adjustment protocol for FES-induced standing in paraplegiausing percutaneous intramuscular electrodes (1995) IEEE Trans Rehabil Eng, 3, pp. 360-366. , http://dx.doi.org/10.1109/86.481976
dc.descriptionFisekovic, N., Popovic, D.B., New controller for functional electrical stimulation systems (2001) Med Eng Phys, 23, pp. 391-399. , http://dx.doi.org/10.1016/S1350-4533(01)00069-8
dc.descriptionLangzam, E., Nemirovsky, Y., Isakov, E., Mizrahi, J., Muscle enhancement using closed-loop electrical stimulation: Volitional versus induced torque (2007) J Electromyogr Kinesiol, 17, pp. 275-284. , http://dx.doi.org/10.1016/j.jelekin.2006.03.001
dc.descriptionBaptista, R.R., Scheeren, E.M., Macintosh, B.R., Vaz, M.A., Low-frequency fatigue at maximal and submaximal muscle contractions (2009) Braz J Med Biol Res, 42, pp. 380-385. , http://dx.doi.org/10.1590/S0100-879X2009000400011
dc.descriptionBailey, S.N., Hardin, E.C., Kobetic, R., Boggs, L.M., Pinault, G., Triolo, R.J., Neurotherapeutic and neuroprosthetic effects of implanted functional electrical stimulation for ambulation after incomplete spinal cord injury (2010) J Rehab Res Develop, 47, pp. 7-16. , http://dx.doi.org/10.1682/JRRD.2009.03.0034
dc.descriptionKern, H., Carraro, U., Adami, N., Biral, D., Hofer, C., Forstner, C., Home- Based Functional Electrical Stimulation Rescues Permanently Denervated Muscles in Paraplegic Patients With Complete Lower Motor Neuron Lesion (2010) Neurorehabil Neural Repair, , http://dx.doi.org/10.1177/1545968310366129, In Press
dc.languageen
dc.languagept
dc.publisher
dc.relationRevista Neurociencias
dc.rightsaberto
dc.sourceScopus
dc.titleEffects Of Functional Electrical Stimulation In Artificial Neuromuscular Control [efeitos Da Estimulação Elétrica Funcional No Controle Neuromuscular Artificial]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución