dc.creator | Lamparelli R.A.C. | |
dc.creator | Nery L. | |
dc.creator | Rocha J.V. | |
dc.date | 2011 | |
dc.date | 2015-06-30T20:33:27Z | |
dc.date | 2015-11-26T14:51:21Z | |
dc.date | 2015-06-30T20:33:27Z | |
dc.date | 2015-11-26T14:51:21Z | |
dc.date.accessioned | 2018-03-28T22:02:53Z | |
dc.date.available | 2018-03-28T22:02:53Z | |
dc.identifier | | |
dc.identifier | Engenharia Agricola. , v. 31, n. 3, p. 584 - 597, 2011. | |
dc.identifier | 1006916 | |
dc.identifier | 10.1590/S0100-69162011000300018 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-79960613234&partnerID=40&md5=37d62896e2f38c789170ecf7b7e95151 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/108389 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/108389 | |
dc.identifier | 2-s2.0-79960613234 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1254437 | |
dc.description | The main goal of this study was to evaluate the information produced from Landsat/TM5 images using Principal Component Analysis (PCA) and Illumination Factor built from Digital Elevation Model from ASTER images for coffee areas mapping in complex relief. Three Landsat images were used to monitor the crop cycle. The Principal Component Analysis was applied to the Landsat images and the two first components were chosen, responsible for 94% of the initial information, and used as a sample set for the supervised classification of those images. That classification was compared with a conventional supervised classification (sampled from Landsat reflectance images) and multitemporal conventional supervised classification (using the three images). The accuracies of the classifications were calculated by Kappa index of agreement and Global Accuracy, using a coffee mask as reference. The results have shown that PCA was very efficient in illumination class definition as well as in sample choice, despite the samples had not represented the area classified. Due to that, the accuracy has increased, specially the one considering all the pixels classified as coffee in each image using PCA samples, demonstrating the importance of the multitemporal aspect. | |
dc.description | 31 | |
dc.description | 3 | |
dc.description | 584 | |
dc.description | 597 | |
dc.description | Camargo, A.P., Camargo, M.B.P., Definição e esquematização das fases fenológicas do cafeeiro arábica nas condições tropicais do Brasil (2001) Bragantia, 60 (1), pp. 65-68. , Campinas | |
dc.description | Canavesi, V., (2008) Aplicação de dados hiperespectrais na extração de informações qualitativas e quantitativas de plantios florestais do gênero Eucalyptus spp, pp. 145 f. , Tese (Doutorado em Sensoriamento Remoto) - Instituto de Pesquisas Espaciais, São José dos Campos. 2008 | |
dc.description | Canty, M.J., Nielsen, A.A., Schmidt, M., Automatic radiometric normalization of multitemporal satellite imagery (2004) Remote Sensing of Environment, 91 (3-4), pp. 441-451. , New York | |
dc.description | Cohen, J.A., Coefficient of agreement for nominal scales (1960) Educational and Psycological Measurement, 20 (1), pp. 37-46. , Durham | |
dc.description | Cordero-Sancho, S., Sader, S.A., Spectral analysis and classification accuracy of coffee crops using Landsat and a topographic-environmental model (2007) International Journal of Remote Sensing, London, 28 (7), pp. 1.577-1.593 | |
dc.description | Lang, R.H., Welch, R., Algorithm theoretical basis document for Aster digital elevation models 1999 (2006), http://eospso.gsfc.nasa.gov/eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-14.pdf, Disponível em: Acesso em: 19 novMercante, E., (2008) Dinâmica espectral da cultura da soja ao longo do ciclo vegetativo e sua relação com a produtividade na região oeste do Paraná, pp. 241 f. , Tese (Doutorado em Planejamento e Desenvolvimento Rural Sustentável) - Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, 2008 | |
dc.description | Moreira, M.A., Adami, M., Rudorff, B.F.T., Análise espectral e temporal da cultura do café em imagens Landsat (2004) Pesquisa Agropecuária Brasileira, 39 (3), pp. 223-231. , Brasília | |
dc.description | Nascimento, C.R., Zullo Jr., J., Proposta metodológica de utilização de dados do sensor MODIS para correção atmosférica de imagens NOAA/AVHRR, visando à geração de imagens NDVI em modelos agrometeorológicos Anais.., p. 14. , CONGRESSO BRASILEIRO DE AGROMETEOROLOGIA | |
dc.description | Ponzoni, F.J., Shimabukuro, Y.E., (2007) Sensoriamento remoto no estudo da vegetação, , São José dos Campos: A. Silva Vieira Ed | |
dc.description | Richards, J.A., Jia, X., (2006) Remote sensing digital image analysis: an introduction, , 3.ed. New York: Springer: Verlag Berlin Heidelberg | |
dc.description | Tisot, D.A., Formaggio, A.R., Rennó, C.D., Galvão, L.S., Eficácia de dados Hyperion/EO-1 para identificação de alvos agrícolas: comparação com dados Etm+/Landsat-7 (2007) Engenharia Agrícola, 27 (2), pp. 511-519. , Jaboticabal | |
dc.description | Vieira, T.G.C., Alves, H.M.R., Lacerda, M.P.C., Veiga, R.D., Epiphanio, J.C.N., (2004) Crop parameters for the evaluation of the spectral response of coffee (Coffea arabica) areas within the State of Minas Gerais, Brazil, , São José dos Campos: INPE/DSR | |
dc.description | Zullo J., Jr., (1994) Correção atmosférica de imagens de satélite e aplicações, , Tese (Doutorado em Engenharia Elétrica) - Faculdade de Engenharia Elétrica, Universidade Estadual de Campinas, Campinas. 190 f | |
dc.language | pt | |
dc.publisher | | |
dc.relation | Engenharia Agricola | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Coffee Crop Mapping Using Principal Component Analysis And Illumination Factor For Complex Relief [utilização Da Técnica Por Componentes Principais (acp) E Fator De Iluminação, No Mapeamento Da Cultura Do Café Em Relevo Montanhoso] | |
dc.type | Artículos de revistas | |