dc.creatorSilveira L.R.
dc.creatorPinheiro C.H.J.
dc.creatorZoppi C.C.
dc.creatorHirabara S.M.
dc.creatorVitzel K.F.
dc.creatorBassit R.A.
dc.creatorLeandro C.G.
dc.creatorBarbosa M.R.
dc.creatorSampaio I.H.
dc.creatorMelo I.H.P.
dc.creatorFiamoncini J.
dc.creatorCarneiro E.M.
dc.creatorCuri R.
dc.date2011
dc.date2015-06-30T20:33:01Z
dc.date2015-11-26T14:51:04Z
dc.date2015-06-30T20:33:01Z
dc.date2015-11-26T14:51:04Z
dc.date.accessioned2018-03-28T22:02:34Z
dc.date.available2018-03-28T22:02:34Z
dc.identifier
dc.identifierArquivos Brasileiros De Endocrinologia E Metabologia. , v. 55, n. 5, p. 303 - 313, 2011.
dc.identifier42730
dc.identifier10.1590/S0004-27302011000500002
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80052556045&partnerID=40&md5=c897ca98c13ce54a9834e9ed4a2acd08
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108353
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108353
dc.identifier2-s2.0-80052556045
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254377
dc.descriptionThe glucose-fatty acid cycle explains the preference for fatty acid during moderate and long duration physical exercise. In contrast, there is a high glucose availability and oxidation rate in response to intense physical exercise. The reactive oxygen species (ROS) production during physical exercise suggests that the redox balance is important to regulate of lipids/carbohydrate metabolism. ROS reduces the activity of the Krebs cycle, and increases the activity of mitochondrial uncoupling proteins. The opposite effects happen during moderate physical activity. Thus, some issues is highlighted in the present review: Why does skeletal muscle prefer lipids in the basal and during moderate physical activity? Why does glucose-fatty acid fail to carry out their effects during intense physical exercise? How skeletal muscles regulate the lipids and carbohydrate metabolism during the contraction-relaxation cycle?. © ABE&M todos os direitos reservados.
dc.description55
dc.description5
dc.description303
dc.description313
dc.descriptionRandle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A., The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus (1963) Lancet I, 13, pp. 759-785
dc.descriptionNewsholme, E.A., An introduction to the roles of the glucose-fatty acid cycle in sustained exercise (1999) Biochemistry of Exercise, 9, pp. 185-200. , In: Hargreaves M, Thompson M, ed., Champaign, IL: Human Kinetics
dc.descriptionHawley, J.A., Nutritional strategies to enhance fat oxidation during aerobic exercise (1994) Clinical Sports Nutrition, pp. 428-454. , In: Burke L, Deakin V, eds
dc.descriptionSpriet, L.L., Regulation of skeletal muscle fat oxidation during exercise in humans (2002) Med Sci Sports Exer, 34, pp. 1477-1484
dc.descriptionHawley, J.A., Effect of increase fat availability on metabolism and exercise capacity (2002) Med Sci Sports Exer, 34 (9), pp. 1485-1491
dc.descriptionSilveira, L.R., Hirabara, S.M., Alberici, L.C., Lambertucci, R.H., Peres, C.M., Takahashi, H., Effect of lipid infusion on metabolism and force of rat skeletal muscles during intense contractions (2007) Cell Physiol Biochem, 20, pp. 213-226
dc.descriptionCoyle, E.F., Fat oxidation during exercise: Role of lipolysis, FFA availability, and glycolytic flux (1999) Biochemistry of Exercise, 10, pp. 263-273. , In: Hargreaves M, Thompson M, eds., Champaign, IL: Human Kinetics
dc.descriptionSilveira, L.R., Pereira-da-Silva, L., Juel, C., Hellsten, Y., Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contactions (2003) Free Rad Biol Med, 35, pp. 455-464
dc.descriptionGardner, P.R., Fridovich, I., Inactivation-reactivation of aconitase in Escherichia coli (1992) J Biol Chem, 13, pp. 8757-8763
dc.descriptionAndersson, U., Leighton, B., Young, M.E., Blomstrand, E., Newsholme, E.A., Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide (1998) Biochem. Biophys Res Commun, 249, pp. 512-516
dc.descriptionNewsholme, E.A., Leech, A.R., (1983) Biochemistry For the Medical Sciences, pp. 623-627. , Toronto: Wiley
dc.descriptionMitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism (1961) Nature, 191, pp. 144-148
dc.descriptionArkinstall, M.J., Tunstall, R.J., Cameron-Smith, D., Hawley, J.A., Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation (2004) Am J Physiol Endocrinol Metab, 287, pp. E25-E31
dc.descriptionKiens, B., Roeman, T.H.M., van der Vusse, G.J., Muscular long-chain fatty acid content during graded exercise in humans (1999) Am J Physiol Endocrinol Metab, 276, pp. E352-E357
dc.descriptionHirabara, S.M., Silveira, L.R., Sabdulkader, F., Alberici, L.C., Procópio, J., Carvalho, C.R.O., Role of fatty acids in the transition from anaerobic to aerobic metabolism in skeletal muscle during exercise (2006) Cell Biochem Funct, 24, pp. 475-481
dc.descriptionRomijn, J.A., Coyle, E.F., Sidossis, L.S., Gastaldelli, A., Horowitz, J.F., Endert, E., Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration (1993) Am J Physiol Endocrinol Metab, 265, pp. E380-E391
dc.descriptionCostill, D.L., Jansson, E., Gollnick, P.D., Saltin, B., Glycogen utilization in leg muscles of men during level and uphill running (1977) Acta Physiol Scand, 91, pp. 475-481
dc.descriptionLawrence, L., Dyck, D.J., The glucose-fatty acid cycle in skeletal muscle at rest and during exercise (1994) Biochemistry of Exercise, 9, pp. 127-155. , In: Maughan RJ, Shirreffs SM, eds., Champaign, IL: Human Kinetics, Scotland
dc.descriptionSavage, D.B., Petersen, K.F., Shulman, G.I., Disordered lipid metabolism and the pathogenesis of insulin resistance (2007) Physiol Rev, 87, pp. 507-520
dc.descriptionRoden, M., Price, T.B., Perseghin, G., Petersen, K.F., Rothman, D.L., Cline, G.W., Mechanism of free fatty acid-induced insulin resistance in humans (1996) J Clin Invest, 97 (12), pp. 2859-2865
dc.descriptionJoyner, M.J., Coyle, E.F., Endurance exercise performance: The physiology of champions (2008) J Physiol, 586 (1), pp. 35-44
dc.descriptionHill, A.V., Athletic records (1925) Lancet, 5, pp. 481-486
dc.descriptionCostill, D.L., Metabolic responses during distance running (1970) J Appl Physiol, 28, pp. 251-255
dc.descriptionSilveira, L.R., Hirabara, S.M., Lambertucci, R.H., Leandro, C.V., Fiamoncini, J., Justa-Pinheiro, C.H., Regulação metabólica e produção de espécies reativas de oxigênio durante a contração muscular: Efeito do glicogênio na manutenção do estado redox intracelular (2008) Rev Bras Med Esporte, 14 (1), pp. 57-63
dc.descriptionSpriet, L.L., Regulation of substrate use during the marathon (2007) Sports Med, 37 (4-5), pp. 332-336
dc.descriptionFink, J., Costill, L., Pollock, L., Submaximal and maximal working capacity of elite distance runners. Part II: Muscle fiber composition and enzyme activities (1977) Ann N Y Acad Sci, 301, pp. 323-327
dc.descriptionCoyle, E.F., Physiological regulation of marathon performance (2007) Sports Med, 37, pp. 306-311
dc.descriptionWillis, W.T., Jackman, M.R., Mitochondrial function during heavy exercise (1994) Med Sci Sports Exerc, 26, pp. 1347-1353
dc.descriptionBrooks, G.A., Mercier, J., Balance of carbohydrate and lipid utilization during exercise: The "crossover" concept (1994) J Appl Physiol, 76, pp. 2253-2261
dc.descriptionSchrauwen, P., Saris, W.H., Hesselink, M.K., An alternative function for human uncoupling protein 3: Protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix (2001) FASEB J, 15, pp. 2497-2502
dc.descriptionSilveira, L.R., Considerações críticas e metodológicas na determinação de espécies reativas de oxigênio e nitrogênio em células musculares durante contrações (2004) Arq Bras Endocrinol Metab, 48, pp. 812-822
dc.descriptionHellsten, Y., Nielsen, J.J., Lykkesfeldt, J., Bruhn, M., Silveira, L.R., Pilegaard, H., Antioxidant supplementation enhances the exercise--induced increase in mitochondrial uncoupling protein 3 and endothelial nitric oxide synthase mRNA content in human skeletal muscle (2007) Free Rad Biol Med, 43, pp. 353-361
dc.descriptionJackson, M.J., Pye, D., Palomero, J., The production of reactive oxygen and nitrogen species by skeletal muscle (2007) J Appl Physiol, 102, pp. 1664-1670
dc.descriptionAndersson, U., Leighton, B., Young, M.E., Blomstrand, E., Newsholme, E.A., Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide (1998) Biochem Biophys Res Commun, 249, pp. 512-516
dc.descriptionTretter, L., Adam-Vizi, V., Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress (2000) J Neurosci, 20, pp. 8972-8979
dc.descriptionSandström, M.E., Zhang, S.J., Bruton, J., Silva, J.P., Reid, M.B., Westerblad, H., Role of reactive oxygen species in contraction- -mediated glucose transport in mouse skeletal muscle (2006) J Physiol, 575 (1), pp. 251-262
dc.descriptionSchrauwen, P., Hoeks, J., Schaart, G., Kornips, E., Binas, B., van de Vusse, G.J., Uncoupling protein 3 as a mitochondrial fatty acid anion exporter (2003) FASEB J, 17, pp. 2272-2274
dc.descriptionKadenbach, B., Intrinsic and extrinsic uncoupling of oxidative phosphorylation (2003) Biochim Biophys Acta, 1604, pp. 77-94
dc.descriptionAlberici, L.C., Oliveira, H.C., Bighetti, E.J., de Faria, E.C., Degaspari, G.R., Souza, C.T., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2006) J Bioenerg Biomembr, 35, pp. 451-457
dc.descriptionSkulachev, V.P., Uncoupling: New approaches to an old problem of bioenergetics (1998) Biochim Biophys Acta, 1363, pp. 100-124
dc.descriptionHirabara, S.M., Silveira, L.R., Alberici, L.C., Leandro, C.V.G., Lambertucci, R.H., Polimeno, G.C., Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle (2006) Biochim Biophys Acta, 1757, pp. 57-66
dc.descriptionVidal-Puig, A.J., Grujic, D., Zhang, C.Y., Hagen, T., Boss, O., Ido, Y., Energy metabolism in uncoupling protein 3 gene knockout mice (2000) J Biol Chem, 275, pp. 16258-16266
dc.descriptionHirabara, S.M., Silveira, L.R., Abdulkader, F., Carvalho, C.R.O., Procópio, J., Curi, R., Time-dependent effects of fatty acids on skeletal muscle metabolism (2006) J Cell Physiol, 210, pp. 7-215
dc.descriptionSilveira, L.R., Determinação De Espécies Reativas De Oxigênio E Óxido Nítrico Através De Sondas Fluorescentes In Vitro Utilizando Culturas De Células Musculares E Músculos Isolados E Sua Aplicação In Vivo Com a Técnica De Microdiálise, , Campinas, 2003. (Tese de Doutorado Instituto de Biologia, Universidade Estadual de Campinas)
dc.descriptionHesselink, M.K., Greenhaff, P.L., Constantin-Teodosiu, D., Hultman, E., Saris, W.H., Nieuwlaat, R., Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo (2003) J Clin Invest, 111, pp. 479-486
dc.descriptionTalbot, D.A., Brand, M.D., Uncoupling protein 3 protects aconitase against inactivation in isolated skeletal muscle mitochondria (2005) Biochim Biophys Acta, 1709, pp. 150-156
dc.descriptionSilveira, L.R., Pilegaard, H., Kushuara, K., Curi, R., Hellsten, Y., The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1-alpha (PGC-1α), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species (2006) Biochi Biophys Acta, 1763, pp. 969-976
dc.languageen
dc.languagept
dc.publisher
dc.relationArquivos Brasileiros de Endocrinologia e Metabologia
dc.rightsaberto
dc.sourceScopus
dc.titleRegulation Of Glucose And Fatty Acid Metabolism In Skeletal Muscle During Contraction [regulação Do Metabolismo De Glicose E ácido Graxo No Músculo Esquelético Durante Exercício Físico]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución