dc.creator | Silveira L.R. | |
dc.creator | Pinheiro C.H.J. | |
dc.creator | Zoppi C.C. | |
dc.creator | Hirabara S.M. | |
dc.creator | Vitzel K.F. | |
dc.creator | Bassit R.A. | |
dc.creator | Leandro C.G. | |
dc.creator | Barbosa M.R. | |
dc.creator | Sampaio I.H. | |
dc.creator | Melo I.H.P. | |
dc.creator | Fiamoncini J. | |
dc.creator | Carneiro E.M. | |
dc.creator | Curi R. | |
dc.date | 2011 | |
dc.date | 2015-06-30T20:33:01Z | |
dc.date | 2015-11-26T14:51:04Z | |
dc.date | 2015-06-30T20:33:01Z | |
dc.date | 2015-11-26T14:51:04Z | |
dc.date.accessioned | 2018-03-28T22:02:34Z | |
dc.date.available | 2018-03-28T22:02:34Z | |
dc.identifier | | |
dc.identifier | Arquivos Brasileiros De Endocrinologia E Metabologia. , v. 55, n. 5, p. 303 - 313, 2011. | |
dc.identifier | 42730 | |
dc.identifier | 10.1590/S0004-27302011000500002 | |
dc.identifier | http://www.scopus.com/inward/record.url?eid=2-s2.0-80052556045&partnerID=40&md5=c897ca98c13ce54a9834e9ed4a2acd08 | |
dc.identifier | http://www.repositorio.unicamp.br/handle/REPOSIP/108353 | |
dc.identifier | http://repositorio.unicamp.br/jspui/handle/REPOSIP/108353 | |
dc.identifier | 2-s2.0-80052556045 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/1254377 | |
dc.description | The glucose-fatty acid cycle explains the preference for fatty acid during moderate and long duration physical exercise. In contrast, there is a high glucose availability and oxidation rate in response to intense physical exercise. The reactive oxygen species (ROS) production during physical exercise suggests that the redox balance is important to regulate of lipids/carbohydrate metabolism. ROS reduces the activity of the Krebs cycle, and increases the activity of mitochondrial uncoupling proteins. The opposite effects happen during moderate physical activity. Thus, some issues is highlighted in the present review: Why does skeletal muscle prefer lipids in the basal and during moderate physical activity? Why does glucose-fatty acid fail to carry out their effects during intense physical exercise? How skeletal muscles regulate the lipids and carbohydrate metabolism during the contraction-relaxation cycle?. © ABE&M todos os direitos reservados. | |
dc.description | 55 | |
dc.description | 5 | |
dc.description | 303 | |
dc.description | 313 | |
dc.description | Randle, P.J., Garland, P.B., Hales, C.N., Newsholme, E.A., The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus (1963) Lancet I, 13, pp. 759-785 | |
dc.description | Newsholme, E.A., An introduction to the roles of the glucose-fatty acid cycle in sustained exercise (1999) Biochemistry of Exercise, 9, pp. 185-200. , In: Hargreaves M, Thompson M, ed., Champaign, IL: Human Kinetics | |
dc.description | Hawley, J.A., Nutritional strategies to enhance fat oxidation during aerobic exercise (1994) Clinical Sports Nutrition, pp. 428-454. , In: Burke L, Deakin V, eds | |
dc.description | Spriet, L.L., Regulation of skeletal muscle fat oxidation during exercise in humans (2002) Med Sci Sports Exer, 34, pp. 1477-1484 | |
dc.description | Hawley, J.A., Effect of increase fat availability on metabolism and exercise capacity (2002) Med Sci Sports Exer, 34 (9), pp. 1485-1491 | |
dc.description | Silveira, L.R., Hirabara, S.M., Alberici, L.C., Lambertucci, R.H., Peres, C.M., Takahashi, H., Effect of lipid infusion on metabolism and force of rat skeletal muscles during intense contractions (2007) Cell Physiol Biochem, 20, pp. 213-226 | |
dc.description | Coyle, E.F., Fat oxidation during exercise: Role of lipolysis, FFA availability, and glycolytic flux (1999) Biochemistry of Exercise, 10, pp. 263-273. , In: Hargreaves M, Thompson M, eds., Champaign, IL: Human Kinetics | |
dc.description | Silveira, L.R., Pereira-da-Silva, L., Juel, C., Hellsten, Y., Formation of hydrogen peroxide and nitric oxide in rat skeletal muscle cells during contactions (2003) Free Rad Biol Med, 35, pp. 455-464 | |
dc.description | Gardner, P.R., Fridovich, I., Inactivation-reactivation of aconitase in Escherichia coli (1992) J Biol Chem, 13, pp. 8757-8763 | |
dc.description | Andersson, U., Leighton, B., Young, M.E., Blomstrand, E., Newsholme, E.A., Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide (1998) Biochem. Biophys Res Commun, 249, pp. 512-516 | |
dc.description | Newsholme, E.A., Leech, A.R., (1983) Biochemistry For the Medical Sciences, pp. 623-627. , Toronto: Wiley | |
dc.description | Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism (1961) Nature, 191, pp. 144-148 | |
dc.description | Arkinstall, M.J., Tunstall, R.J., Cameron-Smith, D., Hawley, J.A., Regulation of metabolic genes in human skeletal muscle by short-term exercise and diet manipulation (2004) Am J Physiol Endocrinol Metab, 287, pp. E25-E31 | |
dc.description | Kiens, B., Roeman, T.H.M., van der Vusse, G.J., Muscular long-chain fatty acid content during graded exercise in humans (1999) Am J Physiol Endocrinol Metab, 276, pp. E352-E357 | |
dc.description | Hirabara, S.M., Silveira, L.R., Sabdulkader, F., Alberici, L.C., Procópio, J., Carvalho, C.R.O., Role of fatty acids in the transition from anaerobic to aerobic metabolism in skeletal muscle during exercise (2006) Cell Biochem Funct, 24, pp. 475-481 | |
dc.description | Romijn, J.A., Coyle, E.F., Sidossis, L.S., Gastaldelli, A., Horowitz, J.F., Endert, E., Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration (1993) Am J Physiol Endocrinol Metab, 265, pp. E380-E391 | |
dc.description | Costill, D.L., Jansson, E., Gollnick, P.D., Saltin, B., Glycogen utilization in leg muscles of men during level and uphill running (1977) Acta Physiol Scand, 91, pp. 475-481 | |
dc.description | Lawrence, L., Dyck, D.J., The glucose-fatty acid cycle in skeletal muscle at rest and during exercise (1994) Biochemistry of Exercise, 9, pp. 127-155. , In: Maughan RJ, Shirreffs SM, eds., Champaign, IL: Human Kinetics, Scotland | |
dc.description | Savage, D.B., Petersen, K.F., Shulman, G.I., Disordered lipid metabolism and the pathogenesis of insulin resistance (2007) Physiol Rev, 87, pp. 507-520 | |
dc.description | Roden, M., Price, T.B., Perseghin, G., Petersen, K.F., Rothman, D.L., Cline, G.W., Mechanism of free fatty acid-induced insulin resistance in humans (1996) J Clin Invest, 97 (12), pp. 2859-2865 | |
dc.description | Joyner, M.J., Coyle, E.F., Endurance exercise performance: The physiology of champions (2008) J Physiol, 586 (1), pp. 35-44 | |
dc.description | Hill, A.V., Athletic records (1925) Lancet, 5, pp. 481-486 | |
dc.description | Costill, D.L., Metabolic responses during distance running (1970) J Appl Physiol, 28, pp. 251-255 | |
dc.description | Silveira, L.R., Hirabara, S.M., Lambertucci, R.H., Leandro, C.V., Fiamoncini, J., Justa-Pinheiro, C.H., Regulação metabólica e produção de espécies reativas de oxigênio durante a contração muscular: Efeito do glicogênio na manutenção do estado redox intracelular (2008) Rev Bras Med Esporte, 14 (1), pp. 57-63 | |
dc.description | Spriet, L.L., Regulation of substrate use during the marathon (2007) Sports Med, 37 (4-5), pp. 332-336 | |
dc.description | Fink, J., Costill, L., Pollock, L., Submaximal and maximal working capacity of elite distance runners. Part II: Muscle fiber composition and enzyme activities (1977) Ann N Y Acad Sci, 301, pp. 323-327 | |
dc.description | Coyle, E.F., Physiological regulation of marathon performance (2007) Sports Med, 37, pp. 306-311 | |
dc.description | Willis, W.T., Jackman, M.R., Mitochondrial function during heavy exercise (1994) Med Sci Sports Exerc, 26, pp. 1347-1353 | |
dc.description | Brooks, G.A., Mercier, J., Balance of carbohydrate and lipid utilization during exercise: The "crossover" concept (1994) J Appl Physiol, 76, pp. 2253-2261 | |
dc.description | Schrauwen, P., Saris, W.H., Hesselink, M.K., An alternative function for human uncoupling protein 3: Protection of mitochondria against accumulation of nonesterified fatty acids inside the mitochondrial matrix (2001) FASEB J, 15, pp. 2497-2502 | |
dc.description | Silveira, L.R., Considerações críticas e metodológicas na determinação de espécies reativas de oxigênio e nitrogênio em células musculares durante contrações (2004) Arq Bras Endocrinol Metab, 48, pp. 812-822 | |
dc.description | Hellsten, Y., Nielsen, J.J., Lykkesfeldt, J., Bruhn, M., Silveira, L.R., Pilegaard, H., Antioxidant supplementation enhances the exercise--induced increase in mitochondrial uncoupling protein 3 and endothelial nitric oxide synthase mRNA content in human skeletal muscle (2007) Free Rad Biol Med, 43, pp. 353-361 | |
dc.description | Jackson, M.J., Pye, D., Palomero, J., The production of reactive oxygen and nitrogen species by skeletal muscle (2007) J Appl Physiol, 102, pp. 1664-1670 | |
dc.description | Andersson, U., Leighton, B., Young, M.E., Blomstrand, E., Newsholme, E.A., Inactivation of aconitase and oxoglutarate dehydrogenase in skeletal muscle in vitro by superoxide anions and/or nitric oxide (1998) Biochem Biophys Res Commun, 249, pp. 512-516 | |
dc.description | Tretter, L., Adam-Vizi, V., Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress (2000) J Neurosci, 20, pp. 8972-8979 | |
dc.description | Sandström, M.E., Zhang, S.J., Bruton, J., Silva, J.P., Reid, M.B., Westerblad, H., Role of reactive oxygen species in contraction- -mediated glucose transport in mouse skeletal muscle (2006) J Physiol, 575 (1), pp. 251-262 | |
dc.description | Schrauwen, P., Hoeks, J., Schaart, G., Kornips, E., Binas, B., van de Vusse, G.J., Uncoupling protein 3 as a mitochondrial fatty acid anion exporter (2003) FASEB J, 17, pp. 2272-2274 | |
dc.description | Kadenbach, B., Intrinsic and extrinsic uncoupling of oxidative phosphorylation (2003) Biochim Biophys Acta, 1604, pp. 77-94 | |
dc.description | Alberici, L.C., Oliveira, H.C., Bighetti, E.J., de Faria, E.C., Degaspari, G.R., Souza, C.T., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2006) J Bioenerg Biomembr, 35, pp. 451-457 | |
dc.description | Skulachev, V.P., Uncoupling: New approaches to an old problem of bioenergetics (1998) Biochim Biophys Acta, 1363, pp. 100-124 | |
dc.description | Hirabara, S.M., Silveira, L.R., Alberici, L.C., Leandro, C.V.G., Lambertucci, R.H., Polimeno, G.C., Acute effect of fatty acids on metabolism and mitochondrial coupling in skeletal muscle (2006) Biochim Biophys Acta, 1757, pp. 57-66 | |
dc.description | Vidal-Puig, A.J., Grujic, D., Zhang, C.Y., Hagen, T., Boss, O., Ido, Y., Energy metabolism in uncoupling protein 3 gene knockout mice (2000) J Biol Chem, 275, pp. 16258-16266 | |
dc.description | Hirabara, S.M., Silveira, L.R., Abdulkader, F., Carvalho, C.R.O., Procópio, J., Curi, R., Time-dependent effects of fatty acids on skeletal muscle metabolism (2006) J Cell Physiol, 210, pp. 7-215 | |
dc.description | Silveira, L.R., Determinação De Espécies Reativas De Oxigênio E Óxido Nítrico Através De Sondas Fluorescentes In Vitro Utilizando Culturas De Células Musculares E Músculos Isolados E Sua Aplicação In Vivo Com a Técnica De Microdiálise, , Campinas, 2003. (Tese de Doutorado Instituto de Biologia, Universidade Estadual de Campinas) | |
dc.description | Hesselink, M.K., Greenhaff, P.L., Constantin-Teodosiu, D., Hultman, E., Saris, W.H., Nieuwlaat, R., Increased uncoupling protein 3 content does not affect mitochondrial function in human skeletal muscle in vivo (2003) J Clin Invest, 111, pp. 479-486 | |
dc.description | Talbot, D.A., Brand, M.D., Uncoupling protein 3 protects aconitase against inactivation in isolated skeletal muscle mitochondria (2005) Biochim Biophys Acta, 1709, pp. 150-156 | |
dc.description | Silveira, L.R., Pilegaard, H., Kushuara, K., Curi, R., Hellsten, Y., The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1-alpha (PGC-1α), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species (2006) Biochi Biophys Acta, 1763, pp. 969-976 | |
dc.language | en | |
dc.language | pt | |
dc.publisher | | |
dc.relation | Arquivos Brasileiros de Endocrinologia e Metabologia | |
dc.rights | aberto | |
dc.source | Scopus | |
dc.title | Regulation Of Glucose And Fatty Acid Metabolism In Skeletal Muscle During Contraction [regulação Do Metabolismo De Glicose E ácido Graxo No Músculo Esquelético Durante Exercício Físico] | |
dc.type | Artículos de revistas | |