dc.creatorde Souza L.A.
dc.creatorde Andrade S.A.L.
dc.creatorde Souza S.C.R.
dc.creatorSchiavinato M.A.
dc.date2011
dc.date2015-06-30T20:32:55Z
dc.date2015-11-26T14:51:03Z
dc.date2015-06-30T20:32:55Z
dc.date2015-11-26T14:51:03Z
dc.date.accessioned2018-03-28T22:02:33Z
dc.date.available2018-03-28T22:02:33Z
dc.identifier
dc.identifierRevista Brasileira De Ciencia Do Solo. , v. 35, n. 4, p. 1441 - 1451, 2011.
dc.identifier1000683
dc.identifier10.1590/S0100-06832011000400038
dc.identifierhttp://www.scopus.com/inward/record.url?eid=2-s2.0-80054970559&partnerID=40&md5=ad50de28dc429c4ab2374995cc1c8b97
dc.identifierhttp://www.repositorio.unicamp.br/handle/REPOSIP/108344
dc.identifierhttp://repositorio.unicamp.br/jspui/handle/REPOSIP/108344
dc.identifier2-s2.0-80054970559
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/1254371
dc.descriptionHeavy metal pollution of soils has increased significantly in the last years owing to anthropic action. Several techniques can be used to revert or to minimize soil contamination, although many of these techniques are harmful to the soil. An alternative is to use a new technique, called phytoremediation, based on the ability of plants to take up elements from soils with excessive high levels of metals or of other potentially toxic elements and thus contribute to soil decontamination. The inoculation of plants with arbuscular mycorrhizal fungi (AMF) can influence the absorption of these elements. The phytoremediation potential of Stizolobium aterrimum plants with or without AMF in soils with increasing lead concentrations was evaluated in a greenhouse experiment, in a 4 x 2 factorial design. The treatments consisted of the addition of four Pb rates (0, 250, 500 and 1000 mg dm-3) to the soil where black velvet bean plants associated or not with Glomus etunicatum AMF where grown. The results showed that black velvet bean was Pb tolerant at the tested rates. The association with AMF did not influence the Pb plant uptake. However, the mycorrhiza influenced biological nitrogen fixation by increasing the activity of the enzyme nitrogenase in mycorrhizal plants. Despite the good results obtained in relation to Pb tolerance of black velvet bean, further studies on the uptake of this element are needed, above all in the case of multicontaminated soils, as actually observed in polluted systems.
dc.description35
dc.description4
dc.description1441
dc.description1451
dc.descriptionAbreu, M.F., Abreu, C.A., Bataglia, O.C., Marques, J.C., (2000) Protocolo analítico para caracterização química de substrato para plantas, , Campinas, Centro de Pesquisa e Desenvolvimento em solos e recursos ambientais-Instituto Agronômico de Campinas
dc.descriptionAlmeida, E.L.D., Marcos, F.C.C., Schiavinato, M.A., Lagôa, A.M.M.A., Abreu, M.F., Crescimento de feijãode-porco na presença de chumbo (2008) Bragantia, 67, pp. 569-576
dc.descriptionAndrade, S.A.L., Abreu, C.A., Abreu, M.F., Silveira, A.P.D., Interação de chumbo, da saturação por bases do solo e de micorriza arbuscular no crescimento e nutrição mineral da soja (2003) R. Bras. Ci. Solo, 27, pp. 945-954
dc.descriptionAndrade, S.A.L., Abreu, C.A., de Abreu, M.F., Silveira, A.P.D., Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants (2004) Appl. Soil Ecol., 26, pp. 123-131
dc.descriptionAndrade, S.A.L., da Silveira, A.P.D., Jorge, R.A., de Abreu, M.F., Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza (2008) Inter. J. Phytoremediat., 10, pp. 1-13
dc.descriptionAndrade, S.A.L., Gratão, P.L., Azevedo, R.A., Silveira, A.P.D., Schiavinato, M.A., Mazzafera, P., Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations (2010) Environ. Exper. Bot., 68, pp. 18-207
dc.descriptionAndrade, S.A.L., Gratao, P.L., Schiavinato, M.A., Silveira, A.P.D., Azevedo, R.A., Mazzafera, P., Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations (2009) Chemosphere, 75, pp. 1363-1370
dc.descriptionAndrade, S.A.L.D., Silveira, A.P.D.D., Biomassa e atividade microbianas do solo sob influência de chumbo e da rizosfera da soja micorrizada (2004) Pesq. Agropec. Bras., 39, pp. 1191-1198
dc.descriptionBalestrasse, K.B., Benavides, M.P., Gallego, S.M., Tomaro, M.L., Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants (2003) Funct. Plant Biol., 30, pp. 57-64
dc.descriptionBieleski, R.L., Turner, N.A., Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography (1966) Anal. Biochem., 17, pp. 278-293
dc.descriptionCalmak, I., Horst, W.J., Effect of aluminum on lipid peroxidation, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max) (1991) Physiol. Plant., 83, pp. 463-468
dc.descriptionCataldo, D.A., Haroon, M., Schrander, L.E., Youngs, V.L., Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid (1975) Comm. Soil Sci. Plant Anal., 6, pp. 71-80
dc.descriptionChen, H.M., Zheng, C.R., Tu, C., Shen, Z.G., Chemical methods and phytoremediation of soil contaminated with heavy metals (2000) Chemosphere, 41, pp. 229-234
dc.descriptionChiraz, C., Houda, G., Habib, G.M., Nitrogen metabolism in tomato plants under cadmium stress (2003) J. Plant Nutr., 26, pp. 1617-1634
dc.descriptionCocking, E.C., Yemm, E.W., Estimation of aminoacids by ninhidrin (1954) Biochem. J., 58, p. 12
dc.descriptionCoruzzi, G.M., Primary N-assimilation into amino acids in Arabidopsis (2008) The Arabidopsis Book-Am. Soc. Plant Biol., pp. 1-17
dc.descriptionDey, S.K., Dey, J., Patra, S., Pothal, D., Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress (2007) Braz. J. Plant Physiol., 19, pp. 53-60
dc.descriptiondi Salvatore, M., Carafa, A.M., Garratù, G., Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates (2008) Chemosphere, 73, pp. 1461-1464
dc.descriptionDrazkiewicz, M., Chlorophyll-ocurrence, functions, mechanisms of action and external factors (1994) Photosynthetica, 30, pp. 321-331
dc.descriptionFrason, R.L., Brown, M.S., Bethlenfalvay, G.J., The Glycine-Glomus-Bradyrhizobium symbiosis. XI. Nodule gas exchange and efficiency as a function of soil and root water status in mycorrhizal soybeans (1991) Physiol. Plant., 83, pp. 476-482
dc.descriptionGalli, U., Schuepp, H., Brunold, C., Heavy metal binding by mycorrhizal fungi (1994) Physiol. Plant., 92, pp. 364-368
dc.descriptionGiller, K.E., Witter, E., McGrath, S.P., Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review (1998) Soil Biol. Biochem., 30, pp. 1389-1414
dc.descriptionGiovanetti, M.E., Mosse, B., An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots (1980) New Phytol., 84, pp. 482-500
dc.descriptionGonzález-Chávez, M.C., Carrillo-González, R., Wright, S.F., Nichols, K.A., The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements (2004) Environ. Pollut., 130, pp. 317-323
dc.descriptionGopal, R., Rizvi, A.H., Excess lead alters growth, metabolism and translocation of certain nutrients in radish (2008) Chemosphere, 70, pp. 1539-1544
dc.descriptionGosling, P., Hodge, A., Goodlass, G., Bending, G.D., Arbuscular mycorrhizal fungi and organic farming (2006) Agric. Ecosyst. Environ., 113, pp. 17-35
dc.descriptionGratão, P.L., Prasad, M.N.V., Cardoso, P.T., Lea, P.J., Azevedo, R.A., Phytoremediation: Green technology for the clean up of toxic metals in the environment (2005) Braz. J. Plant Physiol., 17, pp. 53-64
dc.descriptionHe, H., Zhiting, X., Minjing, L., Shuanglian, X., Shenglan, L., Mba, F.O., Effect of cadmium and herbicides on the growth, chlorophyll and solubel sugar content in rice seedlings (2006) Wuh. Univers. J. Nat. Sci., 11, pp. 742-748
dc.descriptionHeggo, A., Angle, J.S., Chaney, R.L., Effects of vesicular arbuscular mycorrhizal fungi on heavy-metal uptake by soybeans (1990) Soil Biol. Biochem., 22, pp. 865-869
dc.descriptionHildebrandt, U., Regvar, M., Bothe, H., Arbuscular mycorrhiza and heavy metal tolerance (2007) Phytochemistry, 68, pp. 139-146
dc.descriptionHiscox, J.D., Israelstam, F., A method for the extraction of chlorophyll from leaf tissue without maceration (1978) Can. J. Bot., 57, pp. 1332-1334
dc.descriptionJankong, P., Visoottiviseth, P., Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil (2008) Chemosphere, 72, pp. 1092-1097
dc.descriptionJoner, E.J., Leyval, C., Uptake of Cd-109 by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium (1997) New Phytol., 135, pp. 353-360
dc.descriptionKhan, A.G., Kuek, C., Chaudhry, T.M., Khoo, C.S., Hayes, W.J., Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation (2000) Chemosphere, 41, pp. 197-207
dc.descriptionLi, W., Khan, M.A., Yamaguchi, S., Kamiya, Y., Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana (2005) Plant Growth Regul., 46, pp. 45-50
dc.descriptionLichtenthaler, H.K., Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes (1987) Method. Enzymol., 148, pp. 350-382
dc.descriptionLombi, E., Zhao, F.J., Dunham, S.J., McGrath, S.P., Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction (2001) J. Environ. Qual., 30, pp. 1919-1926
dc.descriptionMcFarlane, G.R., Burchett, M.D., Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Grey Mangrove, Avicennia marina (Forsk.) Vierh (2001) Mar. Pollut. Bull., 42, pp. 233-240
dc.descriptionMcCullough, H., The determination of ammonia in whole blood by a direct colorimetric method (1967) Clin. Chim. Acta, 17, pp. 297-304
dc.descriptionMcElroy, J.S., Kopsell, D.A., Physiological role of carotenoids and other antioxidants in plants and application to turfgrass stress management (2009) N. Z. J. Crop Hortic. Sci., 37, pp. 327-333
dc.descriptionOliveira, D.M., Cara, D.V.C., Xavier, P.G., Sobral, L.G.S., Lima, R.B., Almeida, A.L., (2006) Fitorremediação: O estado da arte, , Rio de Janeiro, CETEM/MCT, (Série Tecnologia Ambiental, 34)
dc.descriptionPäivöke, A.E.A., Soil lead alters phytase activity and mineral nutrient balance of Pisum sativum (2002) Environ. Exper. Bot., 48, pp. 61-73
dc.descriptionPeralta-Videa, J.R., de la Rosa, G., Gonzalez, J.H., Gardea-Torresdey, J.L., Effects of the growth stage on the heavy metal tolerance of alfalfa plants (2004) Adv. Environ. Res., 8, pp. 679-685
dc.descriptionPhillips, J.M., Hayman, D.S., Improved procedure for clearing roots and staining parasitic and vesiculararbuscular mycorrhizal fungi for rapid assessment of infection (1970) Trans. British. Mycol. Soc., 55, pp. 158-161
dc.descriptionPiechalak, A., Tomaszewska, B., Baralkiewicz, D., Enhancing phytoremediative ability of Pisum sativum by EDTA application (2003) Phytochemistry, 64, pp. 1239-1251
dc.descriptionRabie, G.H., Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil (2005) African J. Biotechnol., 4, pp. 332-345
dc.descriptionRabie, G.H., Influence of arbuscular mycorrhizal fungi and kinetin on the response of mungbean plants to irrigation with seawater (2005) Mycorrhiza, 15, pp. 225-230
dc.descriptionRai, V., Vajpayee, P., Singh, S.N., Mehrotra, S., Effects of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L (2004) Plant Sci., 167, pp. 1159-1169
dc.descriptionRashid, A., Ayub, N., Ahmad, T., Gul, J., Khan, A.G., Phytoaccumulation prospects of cadmium and zinc by mycorrhizal plant species growing in industrially polluted soils (2008) Environ. Geochem. Health, 31, pp. 91-98
dc.descriptionRenella, G., Landi, L., Nannipieni, P., Degradation of low molecular weight organic acids complexed with heavy metals in soil (2004) Geoderma, 122, pp. 311-315
dc.descriptionRomeiro, S., Lagôa, A.M.M.A., Furlani, P.R., Abreu, C.A.D., Pereira, B.F.F., Absorção de chumbo e potencial de fitorremediação de Canavalia ensiformes L (2007) Bragantia, 66, pp. 327-334
dc.descriptionSantos, F.S.D., Magalhães, M.O.L., Mazur, N., Sobrinho, N.M.B.A., Correção química e fitoestabilização de um resíduo industrial contaminado com Zn e Cd (2007) Sci. Agric., 64, pp. 506-512
dc.descriptionSharma, P., Dubey, R.S., Lead toxicity in plants (2005) Braz. J. Plant Physiol., 17, pp. 35-52
dc.descriptionTuin, B.J.W., Tels, M., Removing heavy metals from contaminated clay soils by extraction with hydrochloric acid, edta or hypochlorite solutions (1990) Environ. Technol., 11, pp. 1039-1052
dc.descriptionWahid, A., Ghani, A., Ali, I., Ashraf, M.Y., Effects of cadmium on carbon and nitrogen assimilation in shoots of mungbean [Vigna radiata (L.) Wilczek] seedlings (2007) J. Agron. Crop Sci., 193, pp. 357-365
dc.descriptionWang, L., Zhou, Q.X., Ding, L.L., Sun, Y.B., Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator (2008) J. Hazard. Mater., 154, pp. 818-825
dc.descriptionWani, P.A., Khan, M.S., Zaidi, A., Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil (2008) Bull. Environ. Contam. Toxicol., 81, pp. 152-158
dc.languageen
dc.languagept
dc.publisher
dc.relationRevista Brasileira de Ciencia do Solo
dc.rightsaberto
dc.sourceScopus
dc.titleTolerance And Phytoremediation Potential Of Stizolobium Aterrimum Associated To The Arbuscular Mycorrhizal Fungi Glomus Etunicatum In Leadcontaminated Soil [tolerância E Potencial Fitorremediador De Stizolobium Aterrimum Associada Ao Fungo Micorrízico Arbuscular Glomus Etunicatum Em Solo Contaminado Por Chumbo]
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución